MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efsubm Structured version   Visualization version   GIF version

Theorem efsubm 24201
Description: The image of a subgroup of the group +, under the exponential function of a scaled complex number is a submonoid of the multiplicative group of fld. (Contributed by Thierry Arnoux, 26-Jan-2020.)
Hypotheses
Ref Expression
efabl.1 𝐹 = (𝑥𝑋 ↦ (exp‘(𝐴 · 𝑥)))
efabl.2 𝐺 = ((mulGrp‘ℂfld) ↾s ran 𝐹)
efabl.3 (𝜑𝐴 ∈ ℂ)
efabl.4 (𝜑𝑋 ∈ (SubGrp‘ℂfld))
Assertion
Ref Expression
efsubm (𝜑 → ran 𝐹 ∈ (SubMnd‘(mulGrp‘ℂfld)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐺   𝑥,𝑋   𝜑,𝑥

Proof of Theorem efsubm
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eff 14737 . . . . . 6 exp:ℂ⟶ℂ
21a1i 11 . . . . 5 ((𝜑𝑥𝑋) → exp:ℂ⟶ℂ)
3 efabl.3 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
43adantr 481 . . . . . 6 ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
5 efabl.4 . . . . . . . 8 (𝜑𝑋 ∈ (SubGrp‘ℂfld))
6 cnfldbas 19669 . . . . . . . . 9 ℂ = (Base‘ℂfld)
76subgss 17516 . . . . . . . 8 (𝑋 ∈ (SubGrp‘ℂfld) → 𝑋 ⊆ ℂ)
85, 7syl 17 . . . . . . 7 (𝜑𝑋 ⊆ ℂ)
98sselda 3583 . . . . . 6 ((𝜑𝑥𝑋) → 𝑥 ∈ ℂ)
104, 9mulcld 10004 . . . . 5 ((𝜑𝑥𝑋) → (𝐴 · 𝑥) ∈ ℂ)
112, 10ffvelrnd 6316 . . . 4 ((𝜑𝑥𝑋) → (exp‘(𝐴 · 𝑥)) ∈ ℂ)
1211ralrimiva 2960 . . 3 (𝜑 → ∀𝑥𝑋 (exp‘(𝐴 · 𝑥)) ∈ ℂ)
13 efabl.1 . . . 4 𝐹 = (𝑥𝑋 ↦ (exp‘(𝐴 · 𝑥)))
1413rnmptss 6347 . . 3 (∀𝑥𝑋 (exp‘(𝐴 · 𝑥)) ∈ ℂ → ran 𝐹 ⊆ ℂ)
1512, 14syl 17 . 2 (𝜑 → ran 𝐹 ⊆ ℂ)
163mul01d 10179 . . . . 5 (𝜑 → (𝐴 · 0) = 0)
1716fveq2d 6152 . . . 4 (𝜑 → (exp‘(𝐴 · 0)) = (exp‘0))
18 ef0 14746 . . . 4 (exp‘0) = 1
1917, 18syl6eq 2671 . . 3 (𝜑 → (exp‘(𝐴 · 0)) = 1)
20 cnfld0 19689 . . . . . 6 0 = (0g‘ℂfld)
2120subg0cl 17523 . . . . 5 (𝑋 ∈ (SubGrp‘ℂfld) → 0 ∈ 𝑋)
225, 21syl 17 . . . 4 (𝜑 → 0 ∈ 𝑋)
23 fvex 6158 . . . 4 (exp‘(𝐴 · 0)) ∈ V
24 oveq2 6612 . . . . . 6 (𝑥 = 0 → (𝐴 · 𝑥) = (𝐴 · 0))
2524fveq2d 6152 . . . . 5 (𝑥 = 0 → (exp‘(𝐴 · 𝑥)) = (exp‘(𝐴 · 0)))
2613, 25elrnmpt1s 5333 . . . 4 ((0 ∈ 𝑋 ∧ (exp‘(𝐴 · 0)) ∈ V) → (exp‘(𝐴 · 0)) ∈ ran 𝐹)
2722, 23, 26sylancl 693 . . 3 (𝜑 → (exp‘(𝐴 · 0)) ∈ ran 𝐹)
2819, 27eqeltrrd 2699 . 2 (𝜑 → 1 ∈ ran 𝐹)
29 efabl.2 . . . . . . . . 9 𝐺 = ((mulGrp‘ℂfld) ↾s ran 𝐹)
3013, 29, 3, 5efabl 24200 . . . . . . . 8 (𝜑𝐺 ∈ Abel)
31 ablgrp 18119 . . . . . . . 8 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
3230, 31syl 17 . . . . . . 7 (𝜑𝐺 ∈ Grp)
33323ad2ant1 1080 . . . . . 6 ((𝜑𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹) → 𝐺 ∈ Grp)
34 simp2 1060 . . . . . . 7 ((𝜑𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹) → 𝑥 ∈ ran 𝐹)
35 eqid 2621 . . . . . . . . . . 11 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
3635, 6mgpbas 18416 . . . . . . . . . 10 ℂ = (Base‘(mulGrp‘ℂfld))
3729, 36ressbas2 15852 . . . . . . . . 9 (ran 𝐹 ⊆ ℂ → ran 𝐹 = (Base‘𝐺))
3815, 37syl 17 . . . . . . . 8 (𝜑 → ran 𝐹 = (Base‘𝐺))
39383ad2ant1 1080 . . . . . . 7 ((𝜑𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹) → ran 𝐹 = (Base‘𝐺))
4034, 39eleqtrd 2700 . . . . . 6 ((𝜑𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹) → 𝑥 ∈ (Base‘𝐺))
41 simp3 1061 . . . . . . 7 ((𝜑𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹) → 𝑦 ∈ ran 𝐹)
4241, 39eleqtrd 2700 . . . . . 6 ((𝜑𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹) → 𝑦 ∈ (Base‘𝐺))
43 eqid 2621 . . . . . . 7 (Base‘𝐺) = (Base‘𝐺)
44 eqid 2621 . . . . . . 7 (+g𝐺) = (+g𝐺)
4543, 44grpcl 17351 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺))
4633, 40, 42, 45syl3anc 1323 . . . . 5 ((𝜑𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹) → (𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺))
47 mptexg 6438 . . . . . . . . . 10 (𝑋 ∈ (SubGrp‘ℂfld) → (𝑥𝑋 ↦ (exp‘(𝐴 · 𝑥))) ∈ V)
485, 47syl 17 . . . . . . . . 9 (𝜑 → (𝑥𝑋 ↦ (exp‘(𝐴 · 𝑥))) ∈ V)
4913, 48syl5eqel 2702 . . . . . . . 8 (𝜑𝐹 ∈ V)
50 rnexg 7045 . . . . . . . 8 (𝐹 ∈ V → ran 𝐹 ∈ V)
51 cnfldmul 19671 . . . . . . . . . 10 · = (.r‘ℂfld)
5235, 51mgpplusg 18414 . . . . . . . . 9 · = (+g‘(mulGrp‘ℂfld))
5329, 52ressplusg 15914 . . . . . . . 8 (ran 𝐹 ∈ V → · = (+g𝐺))
5449, 50, 533syl 18 . . . . . . 7 (𝜑 → · = (+g𝐺))
55543ad2ant1 1080 . . . . . 6 ((𝜑𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹) → · = (+g𝐺))
5655oveqd 6621 . . . . 5 ((𝜑𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹) → (𝑥 · 𝑦) = (𝑥(+g𝐺)𝑦))
5746, 56, 393eltr4d 2713 . . . 4 ((𝜑𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹) → (𝑥 · 𝑦) ∈ ran 𝐹)
58573expb 1263 . . 3 ((𝜑 ∧ (𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹)) → (𝑥 · 𝑦) ∈ ran 𝐹)
5958ralrimivva 2965 . 2 (𝜑 → ∀𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹(𝑥 · 𝑦) ∈ ran 𝐹)
60 cnring 19687 . . 3 fld ∈ Ring
6135ringmgp 18474 . . 3 (ℂfld ∈ Ring → (mulGrp‘ℂfld) ∈ Mnd)
62 cnfld1 19690 . . . . 5 1 = (1r‘ℂfld)
6335, 62ringidval 18424 . . . 4 1 = (0g‘(mulGrp‘ℂfld))
6436, 63, 52issubm 17268 . . 3 ((mulGrp‘ℂfld) ∈ Mnd → (ran 𝐹 ∈ (SubMnd‘(mulGrp‘ℂfld)) ↔ (ran 𝐹 ⊆ ℂ ∧ 1 ∈ ran 𝐹 ∧ ∀𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹(𝑥 · 𝑦) ∈ ran 𝐹)))
6560, 61, 64mp2b 10 . 2 (ran 𝐹 ∈ (SubMnd‘(mulGrp‘ℂfld)) ↔ (ran 𝐹 ⊆ ℂ ∧ 1 ∈ ran 𝐹 ∧ ∀𝑥 ∈ ran 𝐹𝑦 ∈ ran 𝐹(𝑥 · 𝑦) ∈ ran 𝐹))
6615, 28, 59, 65syl3anbrc 1244 1 (𝜑 → ran 𝐹 ∈ (SubMnd‘(mulGrp‘ℂfld)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wral 2907  Vcvv 3186  wss 3555  cmpt 4673  ran crn 5075  wf 5843  cfv 5847  (class class class)co 6604  cc 9878  0cc0 9880  1c1 9881   · cmul 9885  expce 14717  Basecbs 15781  s cress 15782  +gcplusg 15862  Mndcmnd 17215  SubMndcsubmnd 17255  Grpcgrp 17343  SubGrpcsubg 17509  Abelcabl 18115  mulGrpcmgp 18410  Ringcrg 18468  fldccnfld 19665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958  ax-addf 9959  ax-mulf 9960
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-pm 7805  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-sup 8292  df-inf 8293  df-oi 8359  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-rp 11777  df-ico 12123  df-fz 12269  df-fzo 12407  df-fl 12533  df-seq 12742  df-exp 12801  df-fac 13001  df-bc 13030  df-hash 13058  df-shft 13741  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-limsup 14136  df-clim 14153  df-rlim 14154  df-sum 14351  df-ef 14723  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-starv 15877  df-tset 15881  df-ple 15882  df-ds 15885  df-unif 15886  df-0g 16023  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-submnd 17257  df-grp 17346  df-minusg 17347  df-subg 17512  df-cmn 18116  df-abl 18117  df-mgp 18411  df-ur 18423  df-ring 18470  df-cring 18471  df-cnfld 19666
This theorem is referenced by:  circsubm  24203
  Copyright terms: Public domain W3C validator