MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eftlcl Structured version   Visualization version   GIF version

Theorem eftlcl 15032
Description: Closure of the sum of an infinite tail of the series defining the exponential function. (Contributed by Paul Chapman, 17-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.)
Hypothesis
Ref Expression
eftl.1 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
Assertion
Ref Expression
eftlcl ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → Σ𝑘 ∈ (ℤ𝑀)(𝐹𝑘) ∈ ℂ)
Distinct variable groups:   𝑘,𝑛,𝐴   𝑘,𝐹   𝑘,𝑀,𝑛
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem eftlcl
StepHypRef Expression
1 eqid 2756 . 2 (ℤ𝑀) = (ℤ𝑀)
2 nn0z 11588 . . 3 (𝑀 ∈ ℕ0𝑀 ∈ ℤ)
32adantl 473 . 2 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → 𝑀 ∈ ℤ)
4 eqidd 2757 . 2 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = (𝐹𝑘))
5 eluznn0 11946 . . . . 5 ((𝑀 ∈ ℕ0𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℕ0)
65adantll 752 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℕ0)
7 eftl.1 . . . . 5 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
87eftval 15002 . . . 4 (𝑘 ∈ ℕ0 → (𝐹𝑘) = ((𝐴𝑘) / (!‘𝑘)))
96, 8syl 17 . . 3 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = ((𝐴𝑘) / (!‘𝑘)))
10 simpll 807 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ𝑀)) → 𝐴 ∈ ℂ)
11 eftcl 14999 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) / (!‘𝑘)) ∈ ℂ)
1210, 6, 11syl2anc 696 . . 3 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ𝑀)) → ((𝐴𝑘) / (!‘𝑘)) ∈ ℂ)
139, 12eqeltrd 2835 . 2 (((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
147eftlcvg 15031 . 2 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → seq𝑀( + , 𝐹) ∈ dom ⇝ )
151, 3, 4, 13, 14isumcl 14687 1 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → Σ𝑘 ∈ (ℤ𝑀)(𝐹𝑘) ∈ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1628  wcel 2135  cmpt 4877  cfv 6045  (class class class)co 6809  cc 10122   / cdiv 10872  0cn0 11480  cz 11565  cuz 11875  cexp 13050  !cfa 13250  Σcsu 14611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1867  ax-4 1882  ax-5 1984  ax-6 2050  ax-7 2086  ax-8 2137  ax-9 2144  ax-10 2164  ax-11 2179  ax-12 2192  ax-13 2387  ax-ext 2736  ax-rep 4919  ax-sep 4929  ax-nul 4937  ax-pow 4988  ax-pr 5051  ax-un 7110  ax-inf2 8707  ax-cnex 10180  ax-resscn 10181  ax-1cn 10182  ax-icn 10183  ax-addcl 10184  ax-addrcl 10185  ax-mulcl 10186  ax-mulrcl 10187  ax-mulcom 10188  ax-addass 10189  ax-mulass 10190  ax-distr 10191  ax-i2m1 10192  ax-1ne0 10193  ax-1rid 10194  ax-rnegex 10195  ax-rrecex 10196  ax-cnre 10197  ax-pre-lttri 10198  ax-pre-lttrn 10199  ax-pre-ltadd 10200  ax-pre-mulgt0 10201  ax-pre-sup 10202  ax-addf 10203  ax-mulf 10204
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1631  df-fal 1634  df-ex 1850  df-nf 1855  df-sb 2043  df-eu 2607  df-mo 2608  df-clab 2743  df-cleq 2749  df-clel 2752  df-nfc 2887  df-ne 2929  df-nel 3032  df-ral 3051  df-rex 3052  df-reu 3053  df-rmo 3054  df-rab 3055  df-v 3338  df-sbc 3573  df-csb 3671  df-dif 3714  df-un 3716  df-in 3718  df-ss 3725  df-pss 3727  df-nul 4055  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4585  df-int 4624  df-iun 4670  df-br 4801  df-opab 4861  df-mpt 4878  df-tr 4901  df-id 5170  df-eprel 5175  df-po 5183  df-so 5184  df-fr 5221  df-se 5222  df-we 5223  df-xp 5268  df-rel 5269  df-cnv 5270  df-co 5271  df-dm 5272  df-rn 5273  df-res 5274  df-ima 5275  df-pred 5837  df-ord 5883  df-on 5884  df-lim 5885  df-suc 5886  df-iota 6008  df-fun 6047  df-fn 6048  df-f 6049  df-f1 6050  df-fo 6051  df-f1o 6052  df-fv 6053  df-isom 6054  df-riota 6770  df-ov 6812  df-oprab 6813  df-mpt2 6814  df-om 7227  df-1st 7329  df-2nd 7330  df-wrecs 7572  df-recs 7633  df-rdg 7671  df-1o 7725  df-oadd 7729  df-er 7907  df-pm 8022  df-en 8118  df-dom 8119  df-sdom 8120  df-fin 8121  df-sup 8509  df-inf 8510  df-oi 8576  df-card 8951  df-pnf 10264  df-mnf 10265  df-xr 10266  df-ltxr 10267  df-le 10268  df-sub 10456  df-neg 10457  df-div 10873  df-nn 11209  df-2 11267  df-3 11268  df-n0 11481  df-z 11566  df-uz 11876  df-rp 12022  df-ico 12370  df-fz 12516  df-fzo 12656  df-fl 12783  df-seq 12992  df-exp 13051  df-fac 13251  df-hash 13308  df-shft 14002  df-cj 14034  df-re 14035  df-im 14036  df-sqrt 14170  df-abs 14171  df-limsup 14397  df-clim 14414  df-rlim 14415  df-sum 14612
This theorem is referenced by:  eftlub  15034  efsep  15035  resin4p  15063  recos4p  15064  ef01bndlem  15109  sin01bnd  15110  cos01bnd  15111  dveflem  23937
  Copyright terms: Public domain W3C validator