MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  egrsubgr Structured version   Visualization version   GIF version

Theorem egrsubgr 27062
Description: An empty graph consisting of a subset of vertices of a graph (and having no edges) is a subgraph of the graph. (Contributed by AV, 17-Nov-2020.) (Proof shortened by AV, 17-Dec-2020.)
Assertion
Ref Expression
egrsubgr (((𝐺𝑊𝑆𝑈) ∧ (Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (Fun (iEdg‘𝑆) ∧ (Edg‘𝑆) = ∅)) → 𝑆 SubGraph 𝐺)

Proof of Theorem egrsubgr
StepHypRef Expression
1 simp2 1133 . 2 (((𝐺𝑊𝑆𝑈) ∧ (Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (Fun (iEdg‘𝑆) ∧ (Edg‘𝑆) = ∅)) → (Vtx‘𝑆) ⊆ (Vtx‘𝐺))
2 eqid 2824 . . . . . . 7 (iEdg‘𝑆) = (iEdg‘𝑆)
3 eqid 2824 . . . . . . 7 (Edg‘𝑆) = (Edg‘𝑆)
42, 3edg0iedg0 26843 . . . . . 6 (Fun (iEdg‘𝑆) → ((Edg‘𝑆) = ∅ ↔ (iEdg‘𝑆) = ∅))
54adantl 484 . . . . 5 (((𝐺𝑊𝑆𝑈) ∧ Fun (iEdg‘𝑆)) → ((Edg‘𝑆) = ∅ ↔ (iEdg‘𝑆) = ∅))
6 res0 5860 . . . . . . 7 ((iEdg‘𝐺) ↾ ∅) = ∅
76eqcomi 2833 . . . . . 6 ∅ = ((iEdg‘𝐺) ↾ ∅)
8 id 22 . . . . . 6 ((iEdg‘𝑆) = ∅ → (iEdg‘𝑆) = ∅)
9 dmeq 5775 . . . . . . . 8 ((iEdg‘𝑆) = ∅ → dom (iEdg‘𝑆) = dom ∅)
10 dm0 5793 . . . . . . . 8 dom ∅ = ∅
119, 10syl6eq 2875 . . . . . . 7 ((iEdg‘𝑆) = ∅ → dom (iEdg‘𝑆) = ∅)
1211reseq2d 5856 . . . . . 6 ((iEdg‘𝑆) = ∅ → ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆)) = ((iEdg‘𝐺) ↾ ∅))
137, 8, 123eqtr4a 2885 . . . . 5 ((iEdg‘𝑆) = ∅ → (iEdg‘𝑆) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆)))
145, 13syl6bi 255 . . . 4 (((𝐺𝑊𝑆𝑈) ∧ Fun (iEdg‘𝑆)) → ((Edg‘𝑆) = ∅ → (iEdg‘𝑆) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆))))
1514impr 457 . . 3 (((𝐺𝑊𝑆𝑈) ∧ (Fun (iEdg‘𝑆) ∧ (Edg‘𝑆) = ∅)) → (iEdg‘𝑆) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆)))
16153adant2 1127 . 2 (((𝐺𝑊𝑆𝑈) ∧ (Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (Fun (iEdg‘𝑆) ∧ (Edg‘𝑆) = ∅)) → (iEdg‘𝑆) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆)))
17 0ss 4353 . . . . 5 ∅ ⊆ 𝒫 (Vtx‘𝑆)
18 sseq1 3995 . . . . 5 ((Edg‘𝑆) = ∅ → ((Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆) ↔ ∅ ⊆ 𝒫 (Vtx‘𝑆)))
1917, 18mpbiri 260 . . . 4 ((Edg‘𝑆) = ∅ → (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆))
2019adantl 484 . . 3 ((Fun (iEdg‘𝑆) ∧ (Edg‘𝑆) = ∅) → (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆))
21203ad2ant3 1131 . 2 (((𝐺𝑊𝑆𝑈) ∧ (Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (Fun (iEdg‘𝑆) ∧ (Edg‘𝑆) = ∅)) → (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆))
22 eqid 2824 . . . 4 (Vtx‘𝑆) = (Vtx‘𝑆)
23 eqid 2824 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
24 eqid 2824 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
2522, 23, 2, 24, 3issubgr 27056 . . 3 ((𝐺𝑊𝑆𝑈) → (𝑆 SubGraph 𝐺 ↔ ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆)) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆))))
26253ad2ant1 1129 . 2 (((𝐺𝑊𝑆𝑈) ∧ (Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (Fun (iEdg‘𝑆) ∧ (Edg‘𝑆) = ∅)) → (𝑆 SubGraph 𝐺 ↔ ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (iEdg‘𝑆) = ((iEdg‘𝐺) ↾ dom (iEdg‘𝑆)) ∧ (Edg‘𝑆) ⊆ 𝒫 (Vtx‘𝑆))))
271, 16, 21, 26mpbir3and 1338 1 (((𝐺𝑊𝑆𝑈) ∧ (Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (Fun (iEdg‘𝑆) ∧ (Edg‘𝑆) = ∅)) → 𝑆 SubGraph 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1536  wcel 2113  wss 3939  c0 4294  𝒫 cpw 4542   class class class wbr 5069  dom cdm 5558  cres 5560  Fun wfun 6352  cfv 6358  Vtxcvtx 26784  iEdgciedg 26785  Edgcedg 26835   SubGraph csubgr 27052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ral 3146  df-rex 3147  df-rab 3150  df-v 3499  df-sbc 3776  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-iota 6317  df-fun 6360  df-fv 6366  df-edg 26836  df-subgr 27053
This theorem is referenced by:  0uhgrsubgr  27064
  Copyright terms: Public domain W3C validator