Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  eigorthi Structured version   Visualization version   GIF version

Theorem eigorthi 28824
 Description: A necessary and sufficient condition (that holds when 𝑇 is a Hermitian operator) for two eigenvectors 𝐴 and 𝐵 to be orthogonal. Generalization of Equation 1.31 of [Hughes] p. 49. (Contributed by NM, 23-Jan-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
eigorthi.1 𝐴 ∈ ℋ
eigorthi.2 𝐵 ∈ ℋ
eigorthi.3 𝐶 ∈ ℂ
eigorthi.4 𝐷 ∈ ℂ
Assertion
Ref Expression
eigorthi ((((𝑇𝐴) = (𝐶 · 𝐴) ∧ (𝑇𝐵) = (𝐷 · 𝐵)) ∧ 𝐶 ≠ (∗‘𝐷)) → ((𝐴 ·ih (𝑇𝐵)) = ((𝑇𝐴) ·ih 𝐵) ↔ (𝐴 ·ih 𝐵) = 0))

Proof of Theorem eigorthi
StepHypRef Expression
1 oveq2 6698 . . . 4 ((𝑇𝐵) = (𝐷 · 𝐵) → (𝐴 ·ih (𝑇𝐵)) = (𝐴 ·ih (𝐷 · 𝐵)))
2 eigorthi.4 . . . . 5 𝐷 ∈ ℂ
3 eigorthi.1 . . . . 5 𝐴 ∈ ℋ
4 eigorthi.2 . . . . 5 𝐵 ∈ ℋ
5 his5 28071 . . . . 5 ((𝐷 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih (𝐷 · 𝐵)) = ((∗‘𝐷) · (𝐴 ·ih 𝐵)))
62, 3, 4, 5mp3an 1464 . . . 4 (𝐴 ·ih (𝐷 · 𝐵)) = ((∗‘𝐷) · (𝐴 ·ih 𝐵))
71, 6syl6eq 2701 . . 3 ((𝑇𝐵) = (𝐷 · 𝐵) → (𝐴 ·ih (𝑇𝐵)) = ((∗‘𝐷) · (𝐴 ·ih 𝐵)))
8 oveq1 6697 . . . 4 ((𝑇𝐴) = (𝐶 · 𝐴) → ((𝑇𝐴) ·ih 𝐵) = ((𝐶 · 𝐴) ·ih 𝐵))
9 eigorthi.3 . . . . 5 𝐶 ∈ ℂ
10 ax-his3 28069 . . . . 5 ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐶 · 𝐴) ·ih 𝐵) = (𝐶 · (𝐴 ·ih 𝐵)))
119, 3, 4, 10mp3an 1464 . . . 4 ((𝐶 · 𝐴) ·ih 𝐵) = (𝐶 · (𝐴 ·ih 𝐵))
128, 11syl6eq 2701 . . 3 ((𝑇𝐴) = (𝐶 · 𝐴) → ((𝑇𝐴) ·ih 𝐵) = (𝐶 · (𝐴 ·ih 𝐵)))
137, 12eqeqan12rd 2669 . 2 (((𝑇𝐴) = (𝐶 · 𝐴) ∧ (𝑇𝐵) = (𝐷 · 𝐵)) → ((𝐴 ·ih (𝑇𝐵)) = ((𝑇𝐴) ·ih 𝐵) ↔ ((∗‘𝐷) · (𝐴 ·ih 𝐵)) = (𝐶 · (𝐴 ·ih 𝐵))))
143, 4hicli 28066 . . . . . . . 8 (𝐴 ·ih 𝐵) ∈ ℂ
152cjcli 13953 . . . . . . . . 9 (∗‘𝐷) ∈ ℂ
16 mulcan2 10703 . . . . . . . . 9 (((∗‘𝐷) ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ ((𝐴 ·ih 𝐵) ∈ ℂ ∧ (𝐴 ·ih 𝐵) ≠ 0)) → (((∗‘𝐷) · (𝐴 ·ih 𝐵)) = (𝐶 · (𝐴 ·ih 𝐵)) ↔ (∗‘𝐷) = 𝐶))
1715, 9, 16mp3an12 1454 . . . . . . . 8 (((𝐴 ·ih 𝐵) ∈ ℂ ∧ (𝐴 ·ih 𝐵) ≠ 0) → (((∗‘𝐷) · (𝐴 ·ih 𝐵)) = (𝐶 · (𝐴 ·ih 𝐵)) ↔ (∗‘𝐷) = 𝐶))
1814, 17mpan 706 . . . . . . 7 ((𝐴 ·ih 𝐵) ≠ 0 → (((∗‘𝐷) · (𝐴 ·ih 𝐵)) = (𝐶 · (𝐴 ·ih 𝐵)) ↔ (∗‘𝐷) = 𝐶))
19 eqcom 2658 . . . . . . 7 ((∗‘𝐷) = 𝐶𝐶 = (∗‘𝐷))
2018, 19syl6bb 276 . . . . . 6 ((𝐴 ·ih 𝐵) ≠ 0 → (((∗‘𝐷) · (𝐴 ·ih 𝐵)) = (𝐶 · (𝐴 ·ih 𝐵)) ↔ 𝐶 = (∗‘𝐷)))
2120biimpcd 239 . . . . 5 (((∗‘𝐷) · (𝐴 ·ih 𝐵)) = (𝐶 · (𝐴 ·ih 𝐵)) → ((𝐴 ·ih 𝐵) ≠ 0 → 𝐶 = (∗‘𝐷)))
2221necon1d 2845 . . . 4 (((∗‘𝐷) · (𝐴 ·ih 𝐵)) = (𝐶 · (𝐴 ·ih 𝐵)) → (𝐶 ≠ (∗‘𝐷) → (𝐴 ·ih 𝐵) = 0))
2322com12 32 . . 3 (𝐶 ≠ (∗‘𝐷) → (((∗‘𝐷) · (𝐴 ·ih 𝐵)) = (𝐶 · (𝐴 ·ih 𝐵)) → (𝐴 ·ih 𝐵) = 0))
24 oveq2 6698 . . . 4 ((𝐴 ·ih 𝐵) = 0 → ((∗‘𝐷) · (𝐴 ·ih 𝐵)) = ((∗‘𝐷) · 0))
25 oveq2 6698 . . . . 5 ((𝐴 ·ih 𝐵) = 0 → (𝐶 · (𝐴 ·ih 𝐵)) = (𝐶 · 0))
269mul01i 10264 . . . . . 6 (𝐶 · 0) = 0
2715mul01i 10264 . . . . . 6 ((∗‘𝐷) · 0) = 0
2826, 27eqtr4i 2676 . . . . 5 (𝐶 · 0) = ((∗‘𝐷) · 0)
2925, 28syl6eq 2701 . . . 4 ((𝐴 ·ih 𝐵) = 0 → (𝐶 · (𝐴 ·ih 𝐵)) = ((∗‘𝐷) · 0))
3024, 29eqtr4d 2688 . . 3 ((𝐴 ·ih 𝐵) = 0 → ((∗‘𝐷) · (𝐴 ·ih 𝐵)) = (𝐶 · (𝐴 ·ih 𝐵)))
3123, 30impbid1 215 . 2 (𝐶 ≠ (∗‘𝐷) → (((∗‘𝐷) · (𝐴 ·ih 𝐵)) = (𝐶 · (𝐴 ·ih 𝐵)) ↔ (𝐴 ·ih 𝐵) = 0))
3213, 31sylan9bb 736 1 ((((𝑇𝐴) = (𝐶 · 𝐴) ∧ (𝑇𝐵) = (𝐷 · 𝐵)) ∧ 𝐶 ≠ (∗‘𝐷)) → ((𝐴 ·ih (𝑇𝐵)) = ((𝑇𝐴) ·ih 𝐵) ↔ (𝐴 ·ih 𝐵) = 0))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1523   ∈ wcel 2030   ≠ wne 2823  ‘cfv 5926  (class class class)co 6690  ℂcc 9972  0cc0 9974   · cmul 9979  ∗ccj 13880   ℋchil 27904   ·ℎ csm 27906   ·ih csp 27907 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-hfvmul 27990  ax-hfi 28064  ax-his1 28067  ax-his3 28069 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-po 5064  df-so 5065  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-2 11117  df-cj 13883  df-re 13884  df-im 13885 This theorem is referenced by:  eigorth  28825
 Copyright terms: Public domain W3C validator