HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  eigre Structured version   Visualization version   GIF version

Theorem eigre 29024
Description: A necessary and sufficient condition (that holds when 𝑇 is a Hermitian operator) for an eigenvalue 𝐵 to be real. Generalization of Equation 1.30 of [Hughes] p. 49. (Contributed by NM, 19-Mar-2006.) (New usage is discouraged.)
Assertion
Ref Expression
eigre (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ) ∧ ((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0)) → ((𝐴 ·ih (𝑇𝐴)) = ((𝑇𝐴) ·ih 𝐴) ↔ 𝐵 ∈ ℝ))

Proof of Theorem eigre
StepHypRef Expression
1 fveq2 6353 . . . . . 6 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝑇𝐴) = (𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)))
2 oveq2 6822 . . . . . 6 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝐵 · 𝐴) = (𝐵 · if(𝐴 ∈ ℋ, 𝐴, 0)))
31, 2eqeq12d 2775 . . . . 5 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((𝑇𝐴) = (𝐵 · 𝐴) ↔ (𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (𝐵 · if(𝐴 ∈ ℋ, 𝐴, 0))))
4 neeq1 2994 . . . . 5 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝐴 ≠ 0 ↔ if(𝐴 ∈ ℋ, 𝐴, 0) ≠ 0))
53, 4anbi12d 749 . . . 4 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0) ↔ ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (𝐵 · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ if(𝐴 ∈ ℋ, 𝐴, 0) ≠ 0)))
6 id 22 . . . . . . 7 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → 𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0))
76, 1oveq12d 6832 . . . . . 6 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (𝐴 ·ih (𝑇𝐴)) = (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0))))
81, 6oveq12d 6832 . . . . . 6 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((𝑇𝐴) ·ih 𝐴) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐴 ∈ ℋ, 𝐴, 0)))
97, 8eqeq12d 2775 . . . . 5 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((𝐴 ·ih (𝑇𝐴)) = ((𝑇𝐴) ·ih 𝐴) ↔ (if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0))) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐴 ∈ ℋ, 𝐴, 0))))
109bibi1d 332 . . . 4 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → (((𝐴 ·ih (𝑇𝐴)) = ((𝑇𝐴) ·ih 𝐴) ↔ 𝐵 ∈ ℝ) ↔ ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0))) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐴 ∈ ℋ, 𝐴, 0)) ↔ 𝐵 ∈ ℝ)))
115, 10imbi12d 333 . . 3 (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0) → ((((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0) → ((𝐴 ·ih (𝑇𝐴)) = ((𝑇𝐴) ·ih 𝐴) ↔ 𝐵 ∈ ℝ)) ↔ (((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (𝐵 · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ if(𝐴 ∈ ℋ, 𝐴, 0) ≠ 0) → ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0))) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐴 ∈ ℋ, 𝐴, 0)) ↔ 𝐵 ∈ ℝ))))
12 oveq1 6821 . . . . . 6 (𝐵 = if(𝐵 ∈ ℂ, 𝐵, 0) → (𝐵 · if(𝐴 ∈ ℋ, 𝐴, 0)) = (if(𝐵 ∈ ℂ, 𝐵, 0) · if(𝐴 ∈ ℋ, 𝐴, 0)))
1312eqeq2d 2770 . . . . 5 (𝐵 = if(𝐵 ∈ ℂ, 𝐵, 0) → ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (𝐵 · if(𝐴 ∈ ℋ, 𝐴, 0)) ↔ (𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (if(𝐵 ∈ ℂ, 𝐵, 0) · if(𝐴 ∈ ℋ, 𝐴, 0))))
1413anbi1d 743 . . . 4 (𝐵 = if(𝐵 ∈ ℂ, 𝐵, 0) → (((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (𝐵 · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ if(𝐴 ∈ ℋ, 𝐴, 0) ≠ 0) ↔ ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (if(𝐵 ∈ ℂ, 𝐵, 0) · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ if(𝐴 ∈ ℋ, 𝐴, 0) ≠ 0)))
15 eleq1 2827 . . . . 5 (𝐵 = if(𝐵 ∈ ℂ, 𝐵, 0) → (𝐵 ∈ ℝ ↔ if(𝐵 ∈ ℂ, 𝐵, 0) ∈ ℝ))
1615bibi2d 331 . . . 4 (𝐵 = if(𝐵 ∈ ℂ, 𝐵, 0) → (((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0))) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐴 ∈ ℋ, 𝐴, 0)) ↔ 𝐵 ∈ ℝ) ↔ ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0))) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐴 ∈ ℋ, 𝐴, 0)) ↔ if(𝐵 ∈ ℂ, 𝐵, 0) ∈ ℝ)))
1714, 16imbi12d 333 . . 3 (𝐵 = if(𝐵 ∈ ℂ, 𝐵, 0) → ((((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (𝐵 · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ if(𝐴 ∈ ℋ, 𝐴, 0) ≠ 0) → ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0))) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐴 ∈ ℋ, 𝐴, 0)) ↔ 𝐵 ∈ ℝ)) ↔ (((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (if(𝐵 ∈ ℂ, 𝐵, 0) · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ if(𝐴 ∈ ℋ, 𝐴, 0) ≠ 0) → ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0))) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐴 ∈ ℋ, 𝐴, 0)) ↔ if(𝐵 ∈ ℂ, 𝐵, 0) ∈ ℝ))))
18 ifhvhv0 28209 . . . 4 if(𝐴 ∈ ℋ, 𝐴, 0) ∈ ℋ
19 0cn 10244 . . . . 5 0 ∈ ℂ
2019elimel 4294 . . . 4 if(𝐵 ∈ ℂ, 𝐵, 0) ∈ ℂ
2118, 20eigrei 29023 . . 3 (((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) = (if(𝐵 ∈ ℂ, 𝐵, 0) · if(𝐴 ∈ ℋ, 𝐴, 0)) ∧ if(𝐴 ∈ ℋ, 𝐴, 0) ≠ 0) → ((if(𝐴 ∈ ℋ, 𝐴, 0) ·ih (𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0))) = ((𝑇‘if(𝐴 ∈ ℋ, 𝐴, 0)) ·ih if(𝐴 ∈ ℋ, 𝐴, 0)) ↔ if(𝐵 ∈ ℂ, 𝐵, 0) ∈ ℝ))
2211, 17, 21dedth2h 4284 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ) → (((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0) → ((𝐴 ·ih (𝑇𝐴)) = ((𝑇𝐴) ·ih 𝐴) ↔ 𝐵 ∈ ℝ)))
2322imp 444 1 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ) ∧ ((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0)) → ((𝐴 ·ih (𝑇𝐴)) = ((𝑇𝐴) ·ih 𝐴) ↔ 𝐵 ∈ ℝ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  wne 2932  ifcif 4230  cfv 6049  (class class class)co 6814  cc 10146  cr 10147  0cc0 10148  chil 28106   · csm 28108   ·ih csp 28109  0c0v 28111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-hv0cl 28190  ax-hfvmul 28192  ax-hfi 28266  ax-his1 28269  ax-his3 28271  ax-his4 28272
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-po 5187  df-so 5188  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-2 11291  df-cj 14058  df-re 14059  df-im 14060
This theorem is referenced by:  eighmre  29152
  Copyright terms: Public domain W3C validator