HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  eigrei Structured version   Visualization version   GIF version

Theorem eigrei 29538
Description: A necessary and sufficient condition (that holds when 𝑇 is a Hermitian operator) for an eigenvalue 𝐵 to be real. Generalization of Equation 1.30 of [Hughes] p. 49. (Contributed by NM, 21-Jan-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
eigre.1 𝐴 ∈ ℋ
eigre.2 𝐵 ∈ ℂ
Assertion
Ref Expression
eigrei (((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0) → ((𝐴 ·ih (𝑇𝐴)) = ((𝑇𝐴) ·ih 𝐴) ↔ 𝐵 ∈ ℝ))

Proof of Theorem eigrei
StepHypRef Expression
1 oveq2 7153 . . . . 5 ((𝑇𝐴) = (𝐵 · 𝐴) → (𝐴 ·ih (𝑇𝐴)) = (𝐴 ·ih (𝐵 · 𝐴)))
2 eigre.2 . . . . . 6 𝐵 ∈ ℂ
3 eigre.1 . . . . . 6 𝐴 ∈ ℋ
4 his5 28790 . . . . . 6 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝐴 ·ih (𝐵 · 𝐴)) = ((∗‘𝐵) · (𝐴 ·ih 𝐴)))
52, 3, 3, 4mp3an 1452 . . . . 5 (𝐴 ·ih (𝐵 · 𝐴)) = ((∗‘𝐵) · (𝐴 ·ih 𝐴))
61, 5syl6eq 2869 . . . 4 ((𝑇𝐴) = (𝐵 · 𝐴) → (𝐴 ·ih (𝑇𝐴)) = ((∗‘𝐵) · (𝐴 ·ih 𝐴)))
7 oveq1 7152 . . . . 5 ((𝑇𝐴) = (𝐵 · 𝐴) → ((𝑇𝐴) ·ih 𝐴) = ((𝐵 · 𝐴) ·ih 𝐴))
8 ax-his3 28788 . . . . . 6 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ) → ((𝐵 · 𝐴) ·ih 𝐴) = (𝐵 · (𝐴 ·ih 𝐴)))
92, 3, 3, 8mp3an 1452 . . . . 5 ((𝐵 · 𝐴) ·ih 𝐴) = (𝐵 · (𝐴 ·ih 𝐴))
107, 9syl6eq 2869 . . . 4 ((𝑇𝐴) = (𝐵 · 𝐴) → ((𝑇𝐴) ·ih 𝐴) = (𝐵 · (𝐴 ·ih 𝐴)))
116, 10eqeq12d 2834 . . 3 ((𝑇𝐴) = (𝐵 · 𝐴) → ((𝐴 ·ih (𝑇𝐴)) = ((𝑇𝐴) ·ih 𝐴) ↔ ((∗‘𝐵) · (𝐴 ·ih 𝐴)) = (𝐵 · (𝐴 ·ih 𝐴))))
123, 3hicli 28785 . . . 4 (𝐴 ·ih 𝐴) ∈ ℂ
13 ax-his4 28789 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 0 < (𝐴 ·ih 𝐴))
143, 13mpan 686 . . . . 5 (𝐴 ≠ 0 → 0 < (𝐴 ·ih 𝐴))
1514gt0ne0d 11192 . . . 4 (𝐴 ≠ 0 → (𝐴 ·ih 𝐴) ≠ 0)
162cjcli 14516 . . . . 5 (∗‘𝐵) ∈ ℂ
17 mulcan2 11266 . . . . 5 (((∗‘𝐵) ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ((𝐴 ·ih 𝐴) ∈ ℂ ∧ (𝐴 ·ih 𝐴) ≠ 0)) → (((∗‘𝐵) · (𝐴 ·ih 𝐴)) = (𝐵 · (𝐴 ·ih 𝐴)) ↔ (∗‘𝐵) = 𝐵))
1816, 2, 17mp3an12 1442 . . . 4 (((𝐴 ·ih 𝐴) ∈ ℂ ∧ (𝐴 ·ih 𝐴) ≠ 0) → (((∗‘𝐵) · (𝐴 ·ih 𝐴)) = (𝐵 · (𝐴 ·ih 𝐴)) ↔ (∗‘𝐵) = 𝐵))
1912, 15, 18sylancr 587 . . 3 (𝐴 ≠ 0 → (((∗‘𝐵) · (𝐴 ·ih 𝐴)) = (𝐵 · (𝐴 ·ih 𝐴)) ↔ (∗‘𝐵) = 𝐵))
2011, 19sylan9bb 510 . 2 (((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0) → ((𝐴 ·ih (𝑇𝐴)) = ((𝑇𝐴) ·ih 𝐴) ↔ (∗‘𝐵) = 𝐵))
212cjrebi 14521 . 2 (𝐵 ∈ ℝ ↔ (∗‘𝐵) = 𝐵)
2220, 21syl6bbr 290 1 (((𝑇𝐴) = (𝐵 · 𝐴) ∧ 𝐴 ≠ 0) → ((𝐴 ·ih (𝑇𝐴)) = ((𝑇𝐴) ·ih 𝐴) ↔ 𝐵 ∈ ℝ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  wne 3013   class class class wbr 5057  cfv 6348  (class class class)co 7145  cc 10523  cr 10524  0cc0 10525   · cmul 10530   < clt 10663  ccj 14443  chba 28623   · csm 28625   ·ih csp 28626  0c0v 28628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-hfvmul 28709  ax-hfi 28783  ax-his1 28786  ax-his3 28788  ax-his4 28789
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-po 5467  df-so 5468  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-2 11688  df-cj 14446  df-re 14447  df-im 14448
This theorem is referenced by:  eigre  29539  eigposi  29540
  Copyright terms: Public domain W3C validator