Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elbigo Structured version   Visualization version   GIF version

Theorem elbigo 42670
Description: Properties of a function of order G(x). (Contributed by AV, 16-May-2020.)
Assertion
Ref Expression
elbigo (𝐹 ∈ (Ο‘𝐺) ↔ (𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐺 ∈ (ℝ ↑pm ℝ) ∧ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹𝑦) ≤ (𝑚 · (𝐺𝑦))))
Distinct variable groups:   𝑥,𝐺,𝑚,𝑦   𝑚,𝐹,𝑥,𝑦

Proof of Theorem elbigo
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 bigoval 42668 . . . . 5 (𝐺 ∈ (ℝ ↑pm ℝ) → (Ο‘𝐺) = {𝑓 ∈ (ℝ ↑pm ℝ) ∣ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(𝑓𝑦) ≤ (𝑚 · (𝐺𝑦))})
21eleq2d 2716 . . . 4 (𝐺 ∈ (ℝ ↑pm ℝ) → (𝐹 ∈ (Ο‘𝐺) ↔ 𝐹 ∈ {𝑓 ∈ (ℝ ↑pm ℝ) ∣ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(𝑓𝑦) ≤ (𝑚 · (𝐺𝑦))}))
3 dmeq 5356 . . . . . . . 8 (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹)
43ineq1d 3846 . . . . . . 7 (𝑓 = 𝐹 → (dom 𝑓 ∩ (𝑥[,)+∞)) = (dom 𝐹 ∩ (𝑥[,)+∞)))
5 fveq1 6228 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓𝑦) = (𝐹𝑦))
65breq1d 4695 . . . . . . 7 (𝑓 = 𝐹 → ((𝑓𝑦) ≤ (𝑚 · (𝐺𝑦)) ↔ (𝐹𝑦) ≤ (𝑚 · (𝐺𝑦))))
74, 6raleqbidv 3182 . . . . . 6 (𝑓 = 𝐹 → (∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(𝑓𝑦) ≤ (𝑚 · (𝐺𝑦)) ↔ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹𝑦) ≤ (𝑚 · (𝐺𝑦))))
872rexbidv 3086 . . . . 5 (𝑓 = 𝐹 → (∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(𝑓𝑦) ≤ (𝑚 · (𝐺𝑦)) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹𝑦) ≤ (𝑚 · (𝐺𝑦))))
98elrab 3396 . . . 4 (𝐹 ∈ {𝑓 ∈ (ℝ ↑pm ℝ) ∣ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(𝑓𝑦) ≤ (𝑚 · (𝐺𝑦))} ↔ (𝐹 ∈ (ℝ ↑pm ℝ) ∧ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹𝑦) ≤ (𝑚 · (𝐺𝑦))))
102, 9syl6bb 276 . . 3 (𝐺 ∈ (ℝ ↑pm ℝ) → (𝐹 ∈ (Ο‘𝐺) ↔ (𝐹 ∈ (ℝ ↑pm ℝ) ∧ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹𝑦) ≤ (𝑚 · (𝐺𝑦)))))
1110pm5.32i 670 . 2 ((𝐺 ∈ (ℝ ↑pm ℝ) ∧ 𝐹 ∈ (Ο‘𝐺)) ↔ (𝐺 ∈ (ℝ ↑pm ℝ) ∧ (𝐹 ∈ (ℝ ↑pm ℝ) ∧ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹𝑦) ≤ (𝑚 · (𝐺𝑦)))))
12 elbigofrcl 42669 . . 3 (𝐹 ∈ (Ο‘𝐺) → 𝐺 ∈ (ℝ ↑pm ℝ))
1312pm4.71ri 666 . 2 (𝐹 ∈ (Ο‘𝐺) ↔ (𝐺 ∈ (ℝ ↑pm ℝ) ∧ 𝐹 ∈ (Ο‘𝐺)))
14 3anan12 1069 . 2 ((𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐺 ∈ (ℝ ↑pm ℝ) ∧ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹𝑦) ≤ (𝑚 · (𝐺𝑦))) ↔ (𝐺 ∈ (ℝ ↑pm ℝ) ∧ (𝐹 ∈ (ℝ ↑pm ℝ) ∧ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹𝑦) ≤ (𝑚 · (𝐺𝑦)))))
1511, 13, 143bitr4i 292 1 (𝐹 ∈ (Ο‘𝐺) ↔ (𝐹 ∈ (ℝ ↑pm ℝ) ∧ 𝐺 ∈ (ℝ ↑pm ℝ) ∧ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹𝑦) ≤ (𝑚 · (𝐺𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wral 2941  wrex 2942  {crab 2945  cin 3606   class class class wbr 4685  dom cdm 5143  cfv 5926  (class class class)co 6690  pm cpm 7900  cr 9973   · cmul 9979  +∞cpnf 10109  cle 10113  [,)cico 12215  Οcbigo 42666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fv 5934  df-ov 6693  df-bigo 42667
This theorem is referenced by:  elbigo2  42671  elbigof  42673  elbigodm  42674
  Copyright terms: Public domain W3C validator