Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elcarsg Structured version   Visualization version   GIF version

Theorem elcarsg 30160
Description: Property of being a Catatheodory measurable set. (Contributed by Thierry Arnoux, 17-May-2020.)
Hypotheses
Ref Expression
carsgval.1 (𝜑𝑂𝑉)
carsgval.2 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
Assertion
Ref Expression
elcarsg (𝜑 → (𝐴 ∈ (toCaraSiga‘𝑀) ↔ (𝐴𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))) = (𝑀𝑒))))
Distinct variable groups:   𝑒,𝑀   𝑒,𝑂   𝜑,𝑒   𝐴,𝑒
Allowed substitution hint:   𝑉(𝑒)

Proof of Theorem elcarsg
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 carsgval.1 . . . 4 (𝜑𝑂𝑉)
2 carsgval.2 . . . 4 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
31, 2carsgval 30158 . . 3 (𝜑 → (toCaraSiga‘𝑀) = {𝑎 ∈ 𝒫 𝑂 ∣ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝑎)) +𝑒 (𝑀‘(𝑒𝑎))) = (𝑀𝑒)})
43eleq2d 2684 . 2 (𝜑 → (𝐴 ∈ (toCaraSiga‘𝑀) ↔ 𝐴 ∈ {𝑎 ∈ 𝒫 𝑂 ∣ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝑎)) +𝑒 (𝑀‘(𝑒𝑎))) = (𝑀𝑒)}))
5 ineq2 3788 . . . . . . . 8 (𝑎 = 𝐴 → (𝑒𝑎) = (𝑒𝐴))
65fveq2d 6154 . . . . . . 7 (𝑎 = 𝐴 → (𝑀‘(𝑒𝑎)) = (𝑀‘(𝑒𝐴)))
7 difeq2 3702 . . . . . . . 8 (𝑎 = 𝐴 → (𝑒𝑎) = (𝑒𝐴))
87fveq2d 6154 . . . . . . 7 (𝑎 = 𝐴 → (𝑀‘(𝑒𝑎)) = (𝑀‘(𝑒𝐴)))
96, 8oveq12d 6625 . . . . . 6 (𝑎 = 𝐴 → ((𝑀‘(𝑒𝑎)) +𝑒 (𝑀‘(𝑒𝑎))) = ((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))))
109eqeq1d 2623 . . . . 5 (𝑎 = 𝐴 → (((𝑀‘(𝑒𝑎)) +𝑒 (𝑀‘(𝑒𝑎))) = (𝑀𝑒) ↔ ((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))) = (𝑀𝑒)))
1110ralbidv 2980 . . . 4 (𝑎 = 𝐴 → (∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝑎)) +𝑒 (𝑀‘(𝑒𝑎))) = (𝑀𝑒) ↔ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))) = (𝑀𝑒)))
1211elrab 3347 . . 3 (𝐴 ∈ {𝑎 ∈ 𝒫 𝑂 ∣ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝑎)) +𝑒 (𝑀‘(𝑒𝑎))) = (𝑀𝑒)} ↔ (𝐴 ∈ 𝒫 𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))) = (𝑀𝑒)))
13 elex 3198 . . . . . 6 (𝐴 ∈ 𝒫 𝑂𝐴 ∈ V)
1413a1i 11 . . . . 5 (𝜑 → (𝐴 ∈ 𝒫 𝑂𝐴 ∈ V))
15 simpr 477 . . . . . . 7 ((𝜑𝐴𝑂) → 𝐴𝑂)
161adantr 481 . . . . . . 7 ((𝜑𝐴𝑂) → 𝑂𝑉)
17 ssexg 4766 . . . . . . 7 ((𝐴𝑂𝑂𝑉) → 𝐴 ∈ V)
1815, 16, 17syl2anc 692 . . . . . 6 ((𝜑𝐴𝑂) → 𝐴 ∈ V)
1918ex 450 . . . . 5 (𝜑 → (𝐴𝑂𝐴 ∈ V))
20 elpwg 4140 . . . . . 6 (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝑂𝐴𝑂))
2120a1i 11 . . . . 5 (𝜑 → (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝑂𝐴𝑂)))
2214, 19, 21pm5.21ndd 369 . . . 4 (𝜑 → (𝐴 ∈ 𝒫 𝑂𝐴𝑂))
2322anbi1d 740 . . 3 (𝜑 → ((𝐴 ∈ 𝒫 𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))) = (𝑀𝑒)) ↔ (𝐴𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))) = (𝑀𝑒))))
2412, 23syl5bb 272 . 2 (𝜑 → (𝐴 ∈ {𝑎 ∈ 𝒫 𝑂 ∣ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝑎)) +𝑒 (𝑀‘(𝑒𝑎))) = (𝑀𝑒)} ↔ (𝐴𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))) = (𝑀𝑒))))
254, 24bitrd 268 1 (𝜑 → (𝐴 ∈ (toCaraSiga‘𝑀) ↔ (𝐴𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))) = (𝑀𝑒))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wral 2907  {crab 2911  Vcvv 3186  cdif 3553  cin 3555  wss 3556  𝒫 cpw 4132  wf 5845  cfv 5849  (class class class)co 6607  0cc0 9883  +∞cpnf 10018   +𝑒 cxad 11891  [,]cicc 12123  toCaraSigaccarsg 30156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4733  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-op 4157  df-uni 4405  df-iun 4489  df-br 4616  df-opab 4676  df-mpt 4677  df-id 4991  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-ov 6610  df-carsg 30157
This theorem is referenced by:  baselcarsg  30161  0elcarsg  30162  difelcarsg  30165  inelcarsg  30166  carsgclctunlem1  30172  carsgclctunlem2  30174  carsgclctun  30176
  Copyright terms: Public domain W3C validator