MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elcls2 Structured version   Visualization version   GIF version

Theorem elcls2 21684
Description: Membership in a closure. (Contributed by NM, 5-Mar-2007.)
Hypothesis
Ref Expression
clscld.1 𝑋 = 𝐽
Assertion
Ref Expression
elcls2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ (𝑃𝑋 ∧ ∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅))))
Distinct variable groups:   𝑥,𝐽   𝑥,𝑃   𝑥,𝑆   𝑥,𝑋

Proof of Theorem elcls2
StepHypRef Expression
1 clscld.1 . . . 4 𝑋 = 𝐽
21clsss3 21669 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋)
3 ssel 3963 . . . 4 (((cls‘𝐽)‘𝑆) ⊆ 𝑋 → (𝑃 ∈ ((cls‘𝐽)‘𝑆) → 𝑃𝑋))
43pm4.71rd 565 . . 3 (((cls‘𝐽)‘𝑆) ⊆ 𝑋 → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ (𝑃𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆))))
52, 4syl 17 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ (𝑃𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆))))
61elcls 21683 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋𝑃𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)))
763expa 1114 . . 3 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑃𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅)))
87pm5.32da 581 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((𝑃𝑋𝑃 ∈ ((cls‘𝐽)‘𝑆)) ↔ (𝑃𝑋 ∧ ∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅))))
95, 8bitrd 281 1 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ (𝑃𝑋 ∧ ∀𝑥𝐽 (𝑃𝑥 → (𝑥𝑆) ≠ ∅))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3018  wral 3140  cin 3937  wss 3938  c0 4293   cuni 4840  cfv 6357  Topctop 21503  clsccl 21628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-top 21504  df-cld 21629  df-ntr 21630  df-cls 21631
This theorem is referenced by:  1stcelcls  22071  tsmsgsum  22749
  Copyright terms: Public domain W3C validator