MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elcntzsn Structured version   Visualization version   GIF version

Theorem elcntzsn 18449
Description: Value of the centralizer of a singleton. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
cntzfval.b 𝐵 = (Base‘𝑀)
cntzfval.p + = (+g𝑀)
cntzfval.z 𝑍 = (Cntz‘𝑀)
Assertion
Ref Expression
elcntzsn (𝑌𝐵 → (𝑋 ∈ (𝑍‘{𝑌}) ↔ (𝑋𝐵 ∧ (𝑋 + 𝑌) = (𝑌 + 𝑋))))

Proof of Theorem elcntzsn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cntzfval.b . . . 4 𝐵 = (Base‘𝑀)
2 cntzfval.p . . . 4 + = (+g𝑀)
3 cntzfval.z . . . 4 𝑍 = (Cntz‘𝑀)
41, 2, 3cntzsnval 18448 . . 3 (𝑌𝐵 → (𝑍‘{𝑌}) = {𝑥𝐵 ∣ (𝑥 + 𝑌) = (𝑌 + 𝑥)})
54eleq2d 2898 . 2 (𝑌𝐵 → (𝑋 ∈ (𝑍‘{𝑌}) ↔ 𝑋 ∈ {𝑥𝐵 ∣ (𝑥 + 𝑌) = (𝑌 + 𝑥)}))
6 oveq1 7157 . . . 4 (𝑥 = 𝑋 → (𝑥 + 𝑌) = (𝑋 + 𝑌))
7 oveq2 7158 . . . 4 (𝑥 = 𝑋 → (𝑌 + 𝑥) = (𝑌 + 𝑋))
86, 7eqeq12d 2837 . . 3 (𝑥 = 𝑋 → ((𝑥 + 𝑌) = (𝑌 + 𝑥) ↔ (𝑋 + 𝑌) = (𝑌 + 𝑋)))
98elrab 3680 . 2 (𝑋 ∈ {𝑥𝐵 ∣ (𝑥 + 𝑌) = (𝑌 + 𝑥)} ↔ (𝑋𝐵 ∧ (𝑋 + 𝑌) = (𝑌 + 𝑋)))
105, 9syl6bb 289 1 (𝑌𝐵 → (𝑋 ∈ (𝑍‘{𝑌}) ↔ (𝑋𝐵 ∧ (𝑋 + 𝑌) = (𝑌 + 𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  {crab 3142  {csn 4561  cfv 6350  (class class class)co 7150  Basecbs 16477  +gcplusg 16559  Cntzccntz 18439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5455  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-ov 7153  df-cntz 18441
This theorem is referenced by:  gsumconst  19048  gsumpt  19076  cntzsnid  30691
  Copyright terms: Public domain W3C validator