Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldioph2lem1 Structured version   Visualization version   GIF version

Theorem eldioph2lem1 39350
Description: Lemma for eldioph2 39352. Construct necessary renaming function for one direction. (Contributed by Stefan O'Rear, 8-Oct-2014.)
Assertion
Ref Expression
eldioph2lem1 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → ∃𝑑 ∈ (ℤ𝑁)∃𝑒 ∈ V (𝑒:(1...𝑑)–1-1-onto𝐴 ∧ (𝑒 ↾ (1...𝑁)) = ( I ↾ (1...𝑁))))
Distinct variable groups:   𝐴,𝑑,𝑒   𝑁,𝑑,𝑒

Proof of Theorem eldioph2lem1
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 nn0re 11900 . . . . . . . . . 10 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
213ad2ant1 1129 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → 𝑁 ∈ ℝ)
32recnd 10663 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → 𝑁 ∈ ℂ)
4 ax-1cn 10589 . . . . . . . 8 1 ∈ ℂ
5 addcom 10820 . . . . . . . 8 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑁 + 1) = (1 + 𝑁))
63, 4, 5sylancl 588 . . . . . . 7 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → (𝑁 + 1) = (1 + 𝑁))
7 diffi 8744 . . . . . . . . . 10 (𝐴 ∈ Fin → (𝐴 ∖ (1...𝑁)) ∈ Fin)
873ad2ant2 1130 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → (𝐴 ∖ (1...𝑁)) ∈ Fin)
9 fzfid 13335 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → (1...𝑁) ∈ Fin)
10 incom 4177 . . . . . . . . . . 11 ((𝐴 ∖ (1...𝑁)) ∩ (1...𝑁)) = ((1...𝑁) ∩ (𝐴 ∖ (1...𝑁)))
11 disjdif 4420 . . . . . . . . . . 11 ((1...𝑁) ∩ (𝐴 ∖ (1...𝑁))) = ∅
1210, 11eqtri 2844 . . . . . . . . . 10 ((𝐴 ∖ (1...𝑁)) ∩ (1...𝑁)) = ∅
1312a1i 11 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → ((𝐴 ∖ (1...𝑁)) ∩ (1...𝑁)) = ∅)
14 hashun 13737 . . . . . . . . 9 (((𝐴 ∖ (1...𝑁)) ∈ Fin ∧ (1...𝑁) ∈ Fin ∧ ((𝐴 ∖ (1...𝑁)) ∩ (1...𝑁)) = ∅) → (♯‘((𝐴 ∖ (1...𝑁)) ∪ (1...𝑁))) = ((♯‘(𝐴 ∖ (1...𝑁))) + (♯‘(1...𝑁))))
158, 9, 13, 14syl3anc 1367 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → (♯‘((𝐴 ∖ (1...𝑁)) ∪ (1...𝑁))) = ((♯‘(𝐴 ∖ (1...𝑁))) + (♯‘(1...𝑁))))
16 uncom 4128 . . . . . . . . . 10 ((𝐴 ∖ (1...𝑁)) ∪ (1...𝑁)) = ((1...𝑁) ∪ (𝐴 ∖ (1...𝑁)))
17 simp3 1134 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → (1...𝑁) ⊆ 𝐴)
18 undif 4429 . . . . . . . . . . 11 ((1...𝑁) ⊆ 𝐴 ↔ ((1...𝑁) ∪ (𝐴 ∖ (1...𝑁))) = 𝐴)
1917, 18sylib 220 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → ((1...𝑁) ∪ (𝐴 ∖ (1...𝑁))) = 𝐴)
2016, 19syl5eq 2868 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → ((𝐴 ∖ (1...𝑁)) ∪ (1...𝑁)) = 𝐴)
2120fveq2d 6668 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → (♯‘((𝐴 ∖ (1...𝑁)) ∪ (1...𝑁))) = (♯‘𝐴))
22 hashfz1 13700 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁)
23223ad2ant1 1129 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → (♯‘(1...𝑁)) = 𝑁)
2423oveq2d 7166 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → ((♯‘(𝐴 ∖ (1...𝑁))) + (♯‘(1...𝑁))) = ((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁))
2515, 21, 243eqtr3d 2864 . . . . . . 7 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → (♯‘𝐴) = ((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁))
266, 25oveq12d 7168 . . . . . 6 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → ((𝑁 + 1)...(♯‘𝐴)) = ((1 + 𝑁)...((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁)))
2726fveq2d 6668 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → (♯‘((𝑁 + 1)...(♯‘𝐴))) = (♯‘((1 + 𝑁)...((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁))))
28 1zzd 12007 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → 1 ∈ ℤ)
29 hashcl 13711 . . . . . . . . . 10 ((𝐴 ∖ (1...𝑁)) ∈ Fin → (♯‘(𝐴 ∖ (1...𝑁))) ∈ ℕ0)
308, 29syl 17 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → (♯‘(𝐴 ∖ (1...𝑁))) ∈ ℕ0)
3130nn0zd 12079 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → (♯‘(𝐴 ∖ (1...𝑁))) ∈ ℤ)
32 nn0z 11999 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
33323ad2ant1 1129 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → 𝑁 ∈ ℤ)
34 fzen 12918 . . . . . . . 8 ((1 ∈ ℤ ∧ (♯‘(𝐴 ∖ (1...𝑁))) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (1...(♯‘(𝐴 ∖ (1...𝑁)))) ≈ ((1 + 𝑁)...((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁)))
3528, 31, 33, 34syl3anc 1367 . . . . . . 7 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → (1...(♯‘(𝐴 ∖ (1...𝑁)))) ≈ ((1 + 𝑁)...((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁)))
3635ensymd 8554 . . . . . 6 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → ((1 + 𝑁)...((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁)) ≈ (1...(♯‘(𝐴 ∖ (1...𝑁)))))
37 fzfi 13334 . . . . . . 7 ((1 + 𝑁)...((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁)) ∈ Fin
38 fzfi 13334 . . . . . . 7 (1...(♯‘(𝐴 ∖ (1...𝑁)))) ∈ Fin
39 hashen 13701 . . . . . . 7 ((((1 + 𝑁)...((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁)) ∈ Fin ∧ (1...(♯‘(𝐴 ∖ (1...𝑁)))) ∈ Fin) → ((♯‘((1 + 𝑁)...((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁))) = (♯‘(1...(♯‘(𝐴 ∖ (1...𝑁))))) ↔ ((1 + 𝑁)...((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁)) ≈ (1...(♯‘(𝐴 ∖ (1...𝑁))))))
4037, 38, 39mp2an 690 . . . . . 6 ((♯‘((1 + 𝑁)...((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁))) = (♯‘(1...(♯‘(𝐴 ∖ (1...𝑁))))) ↔ ((1 + 𝑁)...((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁)) ≈ (1...(♯‘(𝐴 ∖ (1...𝑁)))))
4136, 40sylibr 236 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → (♯‘((1 + 𝑁)...((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁))) = (♯‘(1...(♯‘(𝐴 ∖ (1...𝑁))))))
42 hashfz1 13700 . . . . . 6 ((♯‘(𝐴 ∖ (1...𝑁))) ∈ ℕ0 → (♯‘(1...(♯‘(𝐴 ∖ (1...𝑁))))) = (♯‘(𝐴 ∖ (1...𝑁))))
4330, 42syl 17 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → (♯‘(1...(♯‘(𝐴 ∖ (1...𝑁))))) = (♯‘(𝐴 ∖ (1...𝑁))))
4427, 41, 433eqtrd 2860 . . . 4 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → (♯‘((𝑁 + 1)...(♯‘𝐴))) = (♯‘(𝐴 ∖ (1...𝑁))))
45 fzfi 13334 . . . . 5 ((𝑁 + 1)...(♯‘𝐴)) ∈ Fin
46 hashen 13701 . . . . 5 ((((𝑁 + 1)...(♯‘𝐴)) ∈ Fin ∧ (𝐴 ∖ (1...𝑁)) ∈ Fin) → ((♯‘((𝑁 + 1)...(♯‘𝐴))) = (♯‘(𝐴 ∖ (1...𝑁))) ↔ ((𝑁 + 1)...(♯‘𝐴)) ≈ (𝐴 ∖ (1...𝑁))))
4745, 8, 46sylancr 589 . . . 4 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → ((♯‘((𝑁 + 1)...(♯‘𝐴))) = (♯‘(𝐴 ∖ (1...𝑁))) ↔ ((𝑁 + 1)...(♯‘𝐴)) ≈ (𝐴 ∖ (1...𝑁))))
4844, 47mpbid 234 . . 3 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → ((𝑁 + 1)...(♯‘𝐴)) ≈ (𝐴 ∖ (1...𝑁)))
49 bren 8512 . . 3 (((𝑁 + 1)...(♯‘𝐴)) ≈ (𝐴 ∖ (1...𝑁)) ↔ ∃𝑎 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁)))
5048, 49sylib 220 . 2 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → ∃𝑎 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁)))
51 simpl1 1187 . . . . 5 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → 𝑁 ∈ ℕ0)
5251nn0zd 12079 . . . 4 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → 𝑁 ∈ ℤ)
53 simpl2 1188 . . . . . 6 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → 𝐴 ∈ Fin)
54 hashcl 13711 . . . . . 6 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
5553, 54syl 17 . . . . 5 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → (♯‘𝐴) ∈ ℕ0)
5655nn0zd 12079 . . . 4 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → (♯‘𝐴) ∈ ℤ)
57 nn0addge2 11938 . . . . . . 7 ((𝑁 ∈ ℝ ∧ (♯‘(𝐴 ∖ (1...𝑁))) ∈ ℕ0) → 𝑁 ≤ ((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁))
582, 30, 57syl2anc 586 . . . . . 6 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → 𝑁 ≤ ((♯‘(𝐴 ∖ (1...𝑁))) + 𝑁))
5958, 25breqtrrd 5086 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → 𝑁 ≤ (♯‘𝐴))
6059adantr 483 . . . 4 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → 𝑁 ≤ (♯‘𝐴))
61 eluz2 12243 . . . 4 ((♯‘𝐴) ∈ (ℤ𝑁) ↔ (𝑁 ∈ ℤ ∧ (♯‘𝐴) ∈ ℤ ∧ 𝑁 ≤ (♯‘𝐴)))
6252, 56, 60, 61syl3anbrc 1339 . . 3 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → (♯‘𝐴) ∈ (ℤ𝑁))
63 vex 3497 . . . . 5 𝑎 ∈ V
64 ovex 7183 . . . . . 6 (1...𝑁) ∈ V
65 resiexg 7613 . . . . . 6 ((1...𝑁) ∈ V → ( I ↾ (1...𝑁)) ∈ V)
6664, 65ax-mp 5 . . . . 5 ( I ↾ (1...𝑁)) ∈ V
6763, 66unex 7463 . . . 4 (𝑎 ∪ ( I ↾ (1...𝑁))) ∈ V
6867a1i 11 . . 3 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → (𝑎 ∪ ( I ↾ (1...𝑁))) ∈ V)
69 simpr 487 . . . . 5 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁)))
70 f1oi 6646 . . . . . 6 ( I ↾ (1...𝑁)):(1...𝑁)–1-1-onto→(1...𝑁)
7170a1i 11 . . . . 5 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → ( I ↾ (1...𝑁)):(1...𝑁)–1-1-onto→(1...𝑁))
72 incom 4177 . . . . . 6 (((𝑁 + 1)...(♯‘𝐴)) ∩ (1...𝑁)) = ((1...𝑁) ∩ ((𝑁 + 1)...(♯‘𝐴)))
7351nn0red 11950 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → 𝑁 ∈ ℝ)
7473ltp1d 11564 . . . . . . 7 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → 𝑁 < (𝑁 + 1))
75 fzdisj 12928 . . . . . . 7 (𝑁 < (𝑁 + 1) → ((1...𝑁) ∩ ((𝑁 + 1)...(♯‘𝐴))) = ∅)
7674, 75syl 17 . . . . . 6 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → ((1...𝑁) ∩ ((𝑁 + 1)...(♯‘𝐴))) = ∅)
7772, 76syl5eq 2868 . . . . 5 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → (((𝑁 + 1)...(♯‘𝐴)) ∩ (1...𝑁)) = ∅)
7812a1i 11 . . . . 5 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → ((𝐴 ∖ (1...𝑁)) ∩ (1...𝑁)) = ∅)
79 f1oun 6628 . . . . 5 (((𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁)) ∧ ( I ↾ (1...𝑁)):(1...𝑁)–1-1-onto→(1...𝑁)) ∧ ((((𝑁 + 1)...(♯‘𝐴)) ∩ (1...𝑁)) = ∅ ∧ ((𝐴 ∖ (1...𝑁)) ∩ (1...𝑁)) = ∅)) → (𝑎 ∪ ( I ↾ (1...𝑁))):(((𝑁 + 1)...(♯‘𝐴)) ∪ (1...𝑁))–1-1-onto→((𝐴 ∖ (1...𝑁)) ∪ (1...𝑁)))
8069, 71, 77, 78, 79syl22anc 836 . . . 4 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → (𝑎 ∪ ( I ↾ (1...𝑁))):(((𝑁 + 1)...(♯‘𝐴)) ∪ (1...𝑁))–1-1-onto→((𝐴 ∖ (1...𝑁)) ∪ (1...𝑁)))
81 fzsplit1nn0 39344 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ0𝑁 ≤ (♯‘𝐴)) → (1...(♯‘𝐴)) = ((1...𝑁) ∪ ((𝑁 + 1)...(♯‘𝐴))))
8251, 55, 60, 81syl3anc 1367 . . . . . 6 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → (1...(♯‘𝐴)) = ((1...𝑁) ∪ ((𝑁 + 1)...(♯‘𝐴))))
83 uncom 4128 . . . . . 6 (((𝑁 + 1)...(♯‘𝐴)) ∪ (1...𝑁)) = ((1...𝑁) ∪ ((𝑁 + 1)...(♯‘𝐴)))
8482, 83syl6reqr 2875 . . . . 5 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → (((𝑁 + 1)...(♯‘𝐴)) ∪ (1...𝑁)) = (1...(♯‘𝐴)))
85 simpl3 1189 . . . . . . 7 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → (1...𝑁) ⊆ 𝐴)
8685, 18sylib 220 . . . . . 6 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → ((1...𝑁) ∪ (𝐴 ∖ (1...𝑁))) = 𝐴)
8716, 86syl5eq 2868 . . . . 5 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → ((𝐴 ∖ (1...𝑁)) ∪ (1...𝑁)) = 𝐴)
88 f1oeq23 6601 . . . . 5 (((((𝑁 + 1)...(♯‘𝐴)) ∪ (1...𝑁)) = (1...(♯‘𝐴)) ∧ ((𝐴 ∖ (1...𝑁)) ∪ (1...𝑁)) = 𝐴) → ((𝑎 ∪ ( I ↾ (1...𝑁))):(((𝑁 + 1)...(♯‘𝐴)) ∪ (1...𝑁))–1-1-onto→((𝐴 ∖ (1...𝑁)) ∪ (1...𝑁)) ↔ (𝑎 ∪ ( I ↾ (1...𝑁))):(1...(♯‘𝐴))–1-1-onto𝐴))
8984, 87, 88syl2anc 586 . . . 4 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → ((𝑎 ∪ ( I ↾ (1...𝑁))):(((𝑁 + 1)...(♯‘𝐴)) ∪ (1...𝑁))–1-1-onto→((𝐴 ∖ (1...𝑁)) ∪ (1...𝑁)) ↔ (𝑎 ∪ ( I ↾ (1...𝑁))):(1...(♯‘𝐴))–1-1-onto𝐴))
9080, 89mpbid 234 . . 3 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → (𝑎 ∪ ( I ↾ (1...𝑁))):(1...(♯‘𝐴))–1-1-onto𝐴)
91 resundir 5862 . . . 4 ((𝑎 ∪ ( I ↾ (1...𝑁))) ↾ (1...𝑁)) = ((𝑎 ↾ (1...𝑁)) ∪ (( I ↾ (1...𝑁)) ↾ (1...𝑁)))
92 dmres 5869 . . . . . . . 8 dom (𝑎 ↾ (1...𝑁)) = ((1...𝑁) ∩ dom 𝑎)
93 f1odm 6613 . . . . . . . . . . 11 (𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁)) → dom 𝑎 = ((𝑁 + 1)...(♯‘𝐴)))
9493adantl 484 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → dom 𝑎 = ((𝑁 + 1)...(♯‘𝐴)))
9594ineq2d 4188 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → ((1...𝑁) ∩ dom 𝑎) = ((1...𝑁) ∩ ((𝑁 + 1)...(♯‘𝐴))))
9695, 76eqtrd 2856 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → ((1...𝑁) ∩ dom 𝑎) = ∅)
9792, 96syl5eq 2868 . . . . . . 7 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → dom (𝑎 ↾ (1...𝑁)) = ∅)
98 relres 5876 . . . . . . . 8 Rel (𝑎 ↾ (1...𝑁))
99 reldm0 5792 . . . . . . . 8 (Rel (𝑎 ↾ (1...𝑁)) → ((𝑎 ↾ (1...𝑁)) = ∅ ↔ dom (𝑎 ↾ (1...𝑁)) = ∅))
10098, 99ax-mp 5 . . . . . . 7 ((𝑎 ↾ (1...𝑁)) = ∅ ↔ dom (𝑎 ↾ (1...𝑁)) = ∅)
10197, 100sylibr 236 . . . . . 6 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → (𝑎 ↾ (1...𝑁)) = ∅)
102 residm 5880 . . . . . . 7 (( I ↾ (1...𝑁)) ↾ (1...𝑁)) = ( I ↾ (1...𝑁))
103102a1i 11 . . . . . 6 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → (( I ↾ (1...𝑁)) ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))
104101, 103uneq12d 4139 . . . . 5 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → ((𝑎 ↾ (1...𝑁)) ∪ (( I ↾ (1...𝑁)) ↾ (1...𝑁))) = (∅ ∪ ( I ↾ (1...𝑁))))
105 uncom 4128 . . . . . 6 (∅ ∪ ( I ↾ (1...𝑁))) = (( I ↾ (1...𝑁)) ∪ ∅)
106 un0 4343 . . . . . 6 (( I ↾ (1...𝑁)) ∪ ∅) = ( I ↾ (1...𝑁))
107105, 106eqtri 2844 . . . . 5 (∅ ∪ ( I ↾ (1...𝑁))) = ( I ↾ (1...𝑁))
108104, 107syl6eq 2872 . . . 4 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → ((𝑎 ↾ (1...𝑁)) ∪ (( I ↾ (1...𝑁)) ↾ (1...𝑁))) = ( I ↾ (1...𝑁)))
10991, 108syl5eq 2868 . . 3 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → ((𝑎 ∪ ( I ↾ (1...𝑁))) ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))
110 oveq2 7158 . . . . . 6 (𝑑 = (♯‘𝐴) → (1...𝑑) = (1...(♯‘𝐴)))
111110f1oeq2d 6605 . . . . 5 (𝑑 = (♯‘𝐴) → (𝑒:(1...𝑑)–1-1-onto𝐴𝑒:(1...(♯‘𝐴))–1-1-onto𝐴))
112111anbi1d 631 . . . 4 (𝑑 = (♯‘𝐴) → ((𝑒:(1...𝑑)–1-1-onto𝐴 ∧ (𝑒 ↾ (1...𝑁)) = ( I ↾ (1...𝑁))) ↔ (𝑒:(1...(♯‘𝐴))–1-1-onto𝐴 ∧ (𝑒 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))))
113 f1oeq1 6598 . . . . 5 (𝑒 = (𝑎 ∪ ( I ↾ (1...𝑁))) → (𝑒:(1...(♯‘𝐴))–1-1-onto𝐴 ↔ (𝑎 ∪ ( I ↾ (1...𝑁))):(1...(♯‘𝐴))–1-1-onto𝐴))
114 reseq1 5841 . . . . . 6 (𝑒 = (𝑎 ∪ ( I ↾ (1...𝑁))) → (𝑒 ↾ (1...𝑁)) = ((𝑎 ∪ ( I ↾ (1...𝑁))) ↾ (1...𝑁)))
115114eqeq1d 2823 . . . . 5 (𝑒 = (𝑎 ∪ ( I ↾ (1...𝑁))) → ((𝑒 ↾ (1...𝑁)) = ( I ↾ (1...𝑁)) ↔ ((𝑎 ∪ ( I ↾ (1...𝑁))) ↾ (1...𝑁)) = ( I ↾ (1...𝑁))))
116113, 115anbi12d 632 . . . 4 (𝑒 = (𝑎 ∪ ( I ↾ (1...𝑁))) → ((𝑒:(1...(♯‘𝐴))–1-1-onto𝐴 ∧ (𝑒 ↾ (1...𝑁)) = ( I ↾ (1...𝑁))) ↔ ((𝑎 ∪ ( I ↾ (1...𝑁))):(1...(♯‘𝐴))–1-1-onto𝐴 ∧ ((𝑎 ∪ ( I ↾ (1...𝑁))) ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))))
117112, 116rspc2ev 3634 . . 3 (((♯‘𝐴) ∈ (ℤ𝑁) ∧ (𝑎 ∪ ( I ↾ (1...𝑁))) ∈ V ∧ ((𝑎 ∪ ( I ↾ (1...𝑁))):(1...(♯‘𝐴))–1-1-onto𝐴 ∧ ((𝑎 ∪ ( I ↾ (1...𝑁))) ↾ (1...𝑁)) = ( I ↾ (1...𝑁)))) → ∃𝑑 ∈ (ℤ𝑁)∃𝑒 ∈ V (𝑒:(1...𝑑)–1-1-onto𝐴 ∧ (𝑒 ↾ (1...𝑁)) = ( I ↾ (1...𝑁))))
11862, 68, 90, 109, 117syl112anc 1370 . 2 (((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) ∧ 𝑎:((𝑁 + 1)...(♯‘𝐴))–1-1-onto→(𝐴 ∖ (1...𝑁))) → ∃𝑑 ∈ (ℤ𝑁)∃𝑒 ∈ V (𝑒:(1...𝑑)–1-1-onto𝐴 ∧ (𝑒 ↾ (1...𝑁)) = ( I ↾ (1...𝑁))))
11950, 118exlimddv 1932 1 ((𝑁 ∈ ℕ0𝐴 ∈ Fin ∧ (1...𝑁) ⊆ 𝐴) → ∃𝑑 ∈ (ℤ𝑁)∃𝑒 ∈ V (𝑒:(1...𝑑)–1-1-onto𝐴 ∧ (𝑒 ↾ (1...𝑁)) = ( I ↾ (1...𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wex 1776  wcel 2110  wrex 3139  Vcvv 3494  cdif 3932  cun 3933  cin 3934  wss 3935  c0 4290   class class class wbr 5058   I cid 5453  dom cdm 5549  cres 5551  Rel wrel 5554  1-1-ontowf1o 6348  cfv 6349  (class class class)co 7150  cen 8500  Fincfn 8503  cc 10529  cr 10530  1c1 10532   + caddc 10534   < clt 10669  cle 10670  0cn0 11891  cz 11975  cuz 12237  ...cfz 12886  chash 13684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-dju 9324  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12887  df-hash 13685
This theorem is referenced by:  eldioph2  39352
  Copyright terms: Public domain W3C validator