Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  eldm2 Structured version   Visualization version   GIF version

Theorem eldm2 5354
 Description: Membership in a domain. Theorem 4 of [Suppes] p. 59. (Contributed by NM, 1-Aug-1994.)
Hypothesis
Ref Expression
eldm.1 𝐴 ∈ V
Assertion
Ref Expression
eldm2 (𝐴 ∈ dom 𝐵 ↔ ∃𝑦𝐴, 𝑦⟩ ∈ 𝐵)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵

Proof of Theorem eldm2
StepHypRef Expression
1 eldm.1 . 2 𝐴 ∈ V
2 eldm2g 5352 . 2 (𝐴 ∈ V → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦𝐴, 𝑦⟩ ∈ 𝐵))
31, 2ax-mp 5 1 (𝐴 ∈ dom 𝐵 ↔ ∃𝑦𝐴, 𝑦⟩ ∈ 𝐵)
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 196  ∃wex 1744   ∈ wcel 2030  Vcvv 3231  ⟨cop 4216  dom cdm 5143 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-rab 2950  df-v 3233  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-br 4686  df-dm 5153 This theorem is referenced by:  dmss  5355  opeldm  5360  dmin  5364  dmiun  5365  dmuni  5366  dm0  5371  reldm0  5375  dmrnssfld  5416  dmcoss  5417  dmcosseq  5419  dmres  5454  iss  5482  dmsnopg  5642  relssdmrn  5694  funssres  5968  dmfco  6311  fun11iun  7168  wfrlem12  7471  axdc3lem2  9311  gsum2d2  18419  cnlnssadj  29067  prsdm  30088  eldm3  31777  dfdm5  31800  frrlem11  31917  iss2  34252
 Copyright terms: Public domain W3C validator