![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eldm2 | Structured version Visualization version GIF version |
Description: Membership in a domain. Theorem 4 of [Suppes] p. 59. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
eldm.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
eldm2 | ⊢ (𝐴 ∈ dom 𝐵 ↔ ∃𝑦〈𝐴, 𝑦〉 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldm.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | eldm2g 5352 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦〈𝐴, 𝑦〉 ∈ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ dom 𝐵 ↔ ∃𝑦〈𝐴, 𝑦〉 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∃wex 1744 ∈ wcel 2030 Vcvv 3231 〈cop 4216 dom cdm 5143 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-br 4686 df-dm 5153 |
This theorem is referenced by: dmss 5355 opeldm 5360 dmin 5364 dmiun 5365 dmuni 5366 dm0 5371 reldm0 5375 dmrnssfld 5416 dmcoss 5417 dmcosseq 5419 dmres 5454 iss 5482 dmsnopg 5642 relssdmrn 5694 funssres 5968 dmfco 6311 fun11iun 7168 wfrlem12 7471 axdc3lem2 9311 gsum2d2 18419 cnlnssadj 29067 prsdm 30088 eldm3 31777 dfdm5 31800 frrlem11 31917 iss2 34252 |
Copyright terms: Public domain | W3C validator |