![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eldmeldmressn | Structured version Visualization version GIF version |
Description: An element of the domain (of a relation) is an element of the domain of the restriction (of the relation) to the singleton containing this element. (Contributed by Alexander van der Vekens, 22-Jul-2018.) |
Ref | Expression |
---|---|
eldmeldmressn | ⊢ (𝑋 ∈ dom 𝐹 ↔ 𝑋 ∈ dom (𝐹 ↾ {𝑋})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldmressnsn 5474 | . 2 ⊢ (𝑋 ∈ dom 𝐹 → 𝑋 ∈ dom (𝐹 ↾ {𝑋})) | |
2 | elinel2 3833 | . . 3 ⊢ (𝑋 ∈ ({𝑋} ∩ dom 𝐹) → 𝑋 ∈ dom 𝐹) | |
3 | dmres 5454 | . . 3 ⊢ dom (𝐹 ↾ {𝑋}) = ({𝑋} ∩ dom 𝐹) | |
4 | 2, 3 | eleq2s 2748 | . 2 ⊢ (𝑋 ∈ dom (𝐹 ↾ {𝑋}) → 𝑋 ∈ dom 𝐹) |
5 | 1, 4 | impbii 199 | 1 ⊢ (𝑋 ∈ dom 𝐹 ↔ 𝑋 ∈ dom (𝐹 ↾ {𝑋})) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∈ wcel 2030 ∩ cin 3606 {csn 4210 dom cdm 5143 ↾ cres 5145 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-br 4686 df-opab 4746 df-xp 5149 df-dm 5153 df-res 5155 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |