Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  eldmg Structured version   Visualization version   GIF version

Theorem eldmg 5351
 Description: Domain membership. Theorem 4 of [Suppes] p. 59. (Contributed by Mario Carneiro, 9-Jul-2014.)
Assertion
Ref Expression
eldmg (𝐴𝑉 → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵
Allowed substitution hint:   𝑉(𝑦)

Proof of Theorem eldmg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 breq1 4688 . . 3 (𝑥 = 𝐴 → (𝑥𝐵𝑦𝐴𝐵𝑦))
21exbidv 1890 . 2 (𝑥 = 𝐴 → (∃𝑦 𝑥𝐵𝑦 ↔ ∃𝑦 𝐴𝐵𝑦))
3 df-dm 5153 . 2 dom 𝐵 = {𝑥 ∣ ∃𝑦 𝑥𝐵𝑦}
42, 3elab2g 3385 1 (𝐴𝑉 → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   = wceq 1523  ∃wex 1744   ∈ wcel 2030   class class class wbr 4685  dom cdm 5143 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-rab 2950  df-v 3233  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-br 4686  df-dm 5153 This theorem is referenced by:  eldm2g  5352  eldm  5353  breldmg  5362  releldmb  5392  funeu  5951  fneu  6033  ndmfv  6256  erref  7807  ecdmn0  7832  rlimdm  14326  rlimdmo1  14392  iscmet3lem2  23136  dvcnp2  23728  ulmcau  24194  pserulm  24221  mulog2sum  25271  unbdqndv1  32624  eldmres  34177  eldm4  34178  eldmres2  34179  eldmcnv  34253  afveu  41554  rlimdmafv  41578
 Copyright terms: Public domain W3C validator