![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eldmg | Structured version Visualization version GIF version |
Description: Domain membership. Theorem 4 of [Suppes] p. 59. (Contributed by Mario Carneiro, 9-Jul-2014.) |
Ref | Expression |
---|---|
eldmg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 4688 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥𝐵𝑦 ↔ 𝐴𝐵𝑦)) | |
2 | 1 | exbidv 1890 | . 2 ⊢ (𝑥 = 𝐴 → (∃𝑦 𝑥𝐵𝑦 ↔ ∃𝑦 𝐴𝐵𝑦)) |
3 | df-dm 5153 | . 2 ⊢ dom 𝐵 = {𝑥 ∣ ∃𝑦 𝑥𝐵𝑦} | |
4 | 2, 3 | elab2g 3385 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1523 ∃wex 1744 ∈ wcel 2030 class class class wbr 4685 dom cdm 5143 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-br 4686 df-dm 5153 |
This theorem is referenced by: eldm2g 5352 eldm 5353 breldmg 5362 releldmb 5392 funeu 5951 fneu 6033 ndmfv 6256 erref 7807 ecdmn0 7832 rlimdm 14326 rlimdmo1 14392 iscmet3lem2 23136 dvcnp2 23728 ulmcau 24194 pserulm 24221 mulog2sum 25271 unbdqndv1 32624 eldmres 34177 eldm4 34178 eldmres2 34179 eldmcnv 34253 afveu 41554 rlimdmafv 41578 |
Copyright terms: Public domain | W3C validator |