MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eldmgm Structured version   Visualization version   GIF version

Theorem eldmgm 25526
Description: Elementhood in the set of non-nonpositive integers. (Contributed by Mario Carneiro, 12-Jul-2014.)
Assertion
Ref Expression
eldmgm (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↔ (𝐴 ∈ ℂ ∧ ¬ -𝐴 ∈ ℕ0))

Proof of Theorem eldmgm
StepHypRef Expression
1 eldif 3943 . 2 (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↔ (𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ (ℤ ∖ ℕ)))
2 eldif 3943 . . . . 5 (𝐴 ∈ (ℤ ∖ ℕ) ↔ (𝐴 ∈ ℤ ∧ ¬ 𝐴 ∈ ℕ))
3 elznn 11985 . . . . . . . 8 (𝐴 ∈ ℤ ↔ (𝐴 ∈ ℝ ∧ (𝐴 ∈ ℕ ∨ -𝐴 ∈ ℕ0)))
43simprbi 497 . . . . . . 7 (𝐴 ∈ ℤ → (𝐴 ∈ ℕ ∨ -𝐴 ∈ ℕ0))
54orcanai 996 . . . . . 6 ((𝐴 ∈ ℤ ∧ ¬ 𝐴 ∈ ℕ) → -𝐴 ∈ ℕ0)
6 negneg 10924 . . . . . . . . . 10 (𝐴 ∈ ℂ → --𝐴 = 𝐴)
76adantr 481 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ -𝐴 ∈ ℕ0) → --𝐴 = 𝐴)
8 nn0negz 12008 . . . . . . . . . 10 (-𝐴 ∈ ℕ0 → --𝐴 ∈ ℤ)
98adantl 482 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ -𝐴 ∈ ℕ0) → --𝐴 ∈ ℤ)
107, 9eqeltrrd 2911 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ -𝐴 ∈ ℕ0) → 𝐴 ∈ ℤ)
1110ex 413 . . . . . . 7 (𝐴 ∈ ℂ → (-𝐴 ∈ ℕ0𝐴 ∈ ℤ))
12 nngt0 11656 . . . . . . . . . 10 (𝐴 ∈ ℕ → 0 < 𝐴)
13 nnre 11633 . . . . . . . . . . 11 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
1413lt0neg2d 11198 . . . . . . . . . 10 (𝐴 ∈ ℕ → (0 < 𝐴 ↔ -𝐴 < 0))
1512, 14mpbid 233 . . . . . . . . 9 (𝐴 ∈ ℕ → -𝐴 < 0)
1613renegcld 11055 . . . . . . . . . 10 (𝐴 ∈ ℕ → -𝐴 ∈ ℝ)
17 0re 10631 . . . . . . . . . 10 0 ∈ ℝ
18 ltnle 10708 . . . . . . . . . 10 ((-𝐴 ∈ ℝ ∧ 0 ∈ ℝ) → (-𝐴 < 0 ↔ ¬ 0 ≤ -𝐴))
1916, 17, 18sylancl 586 . . . . . . . . 9 (𝐴 ∈ ℕ → (-𝐴 < 0 ↔ ¬ 0 ≤ -𝐴))
2015, 19mpbid 233 . . . . . . . 8 (𝐴 ∈ ℕ → ¬ 0 ≤ -𝐴)
21 nn0ge0 11910 . . . . . . . 8 (-𝐴 ∈ ℕ0 → 0 ≤ -𝐴)
2220, 21nsyl3 140 . . . . . . 7 (-𝐴 ∈ ℕ0 → ¬ 𝐴 ∈ ℕ)
2311, 22jca2 514 . . . . . 6 (𝐴 ∈ ℂ → (-𝐴 ∈ ℕ0 → (𝐴 ∈ ℤ ∧ ¬ 𝐴 ∈ ℕ)))
245, 23impbid2 227 . . . . 5 (𝐴 ∈ ℂ → ((𝐴 ∈ ℤ ∧ ¬ 𝐴 ∈ ℕ) ↔ -𝐴 ∈ ℕ0))
252, 24syl5bb 284 . . . 4 (𝐴 ∈ ℂ → (𝐴 ∈ (ℤ ∖ ℕ) ↔ -𝐴 ∈ ℕ0))
2625notbid 319 . . 3 (𝐴 ∈ ℂ → (¬ 𝐴 ∈ (ℤ ∖ ℕ) ↔ ¬ -𝐴 ∈ ℕ0))
2726pm5.32i 575 . 2 ((𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ (ℤ ∖ ℕ)) ↔ (𝐴 ∈ ℂ ∧ ¬ -𝐴 ∈ ℕ0))
281, 27bitri 276 1 (𝐴 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↔ (𝐴 ∈ ℂ ∧ ¬ -𝐴 ∈ ℕ0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 207  wa 396  wo 841   = wceq 1528  wcel 2105  cdif 3930   class class class wbr 5057  cc 10523  cr 10524  0cc0 10525   < clt 10663  cle 10664  -cneg 10859  cn 11626  0cn0 11885  cz 11969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-n0 11886  df-z 11970
This theorem is referenced by:  dmgmaddn0  25527  dmlogdmgm  25528  dmgmaddnn0  25531  lgamgulmlem1  25533  lgamucov  25542
  Copyright terms: Public domain W3C validator