Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  elec Structured version   Visualization version   GIF version

Theorem elec 7746
 Description: Membership in an equivalence class. Theorem 72 of [Suppes] p. 82. (Contributed by NM, 23-Jul-1995.)
Hypotheses
Ref Expression
elec.1 𝐴 ∈ V
elec.2 𝐵 ∈ V
Assertion
Ref Expression
elec (𝐴 ∈ [𝐵]𝑅𝐵𝑅𝐴)

Proof of Theorem elec
StepHypRef Expression
1 elec.1 . 2 𝐴 ∈ V
2 elec.2 . 2 𝐵 ∈ V
3 elecg 7745 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ∈ [𝐵]𝑅𝐵𝑅𝐴))
41, 2, 3mp2an 707 1 (𝐴 ∈ [𝐵]𝑅𝐵𝑅𝐴)
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 196   ∈ wcel 1987  Vcvv 3190   class class class wbr 4623  [cec 7700 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pr 4877 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2913  df-rex 2914  df-rab 2917  df-v 3192  df-sbc 3423  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-sn 4156  df-pr 4158  df-op 4162  df-br 4624  df-opab 4684  df-xp 5090  df-cnv 5092  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-ec 7704 This theorem is referenced by:  ecid  7772  sylow2alem2  17973  sylow2a  17974  sylow2blem1  17975  efgval2  18077  efgrelexlemb  18103  efgcpbllemb  18108  frgpnabllem1  18216  tgpconncomp  21856  qustgphaus  21866  vitalilem2  23318  vitalilem3  23319  isbndx  33252  prtlem10  33669  prtlem19  33682  prter3  33686
 Copyright terms: Public domain W3C validator