![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eleq1w | Structured version Visualization version GIF version |
Description: Weaker version of eleq1 2718 (but more general than elequ1 2037) not depending on ax-ext 2631 nor df-cleq 2644. (Contributed by BJ, 24-Jun-2019.) |
Ref | Expression |
---|---|
eleq1w | ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equequ2 1999 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑧 = 𝑥 ↔ 𝑧 = 𝑦)) | |
2 | 1 | anbi1d 741 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑧 = 𝑥 ∧ 𝑧 ∈ 𝐴) ↔ (𝑧 = 𝑦 ∧ 𝑧 ∈ 𝐴))) |
3 | 2 | exbidv 1890 | . 2 ⊢ (𝑥 = 𝑦 → (∃𝑧(𝑧 = 𝑥 ∧ 𝑧 ∈ 𝐴) ↔ ∃𝑧(𝑧 = 𝑦 ∧ 𝑧 ∈ 𝐴))) |
4 | df-clel 2647 | . 2 ⊢ (𝑥 ∈ 𝐴 ↔ ∃𝑧(𝑧 = 𝑥 ∧ 𝑧 ∈ 𝐴)) | |
5 | df-clel 2647 | . 2 ⊢ (𝑦 ∈ 𝐴 ↔ ∃𝑧(𝑧 = 𝑦 ∧ 𝑧 ∈ 𝐴)) | |
6 | 3, 4, 5 | 3bitr4g 303 | 1 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∃wex 1744 ∈ wcel 2030 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 |
This theorem depends on definitions: df-bi 197 df-an 385 df-ex 1745 df-clel 2647 |
This theorem is referenced by: reu8 3435 eqeuel 3974 reuccats1 13526 sumeven 15157 sumodd 15158 numedglnl 26084 uvtxnbgrvtx 26341 wspniunwspnon 26888 fusgr2wsp2nb 27314 numclwlk2lem2f1o 27359 numclwlk2lem2f1oOLD 27366 fsumiunle 29703 frpoinsg 31866 bj-clelsb3 32973 bj-nfcjust 32975 ftc1anclem6 33620 inxprnres 34201 monoordxr 40026 monoord2xr 40028 lmbr3 40297 cnrefiisp 40374 meaiunincf 41018 meaiuninc3v 41019 meaiuninc3 41020 sbgoldbm 41997 |
Copyright terms: Public domain | W3C validator |