MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elequ1 Structured version   Visualization version   GIF version

Theorem elequ1 2120
Description: An identity law for the non-logical predicate. (Contributed by NM, 30-Jun-1993.)
Assertion
Ref Expression
elequ1 (𝑥 = 𝑦 → (𝑥𝑧𝑦𝑧))

Proof of Theorem elequ1
StepHypRef Expression
1 ax8 2119 . 2 (𝑥 = 𝑦 → (𝑥𝑧𝑦𝑧))
2 ax8 2119 . . 3 (𝑦 = 𝑥 → (𝑦𝑧𝑥𝑧))
32equcoms 2026 . 2 (𝑥 = 𝑦 → (𝑦𝑧𝑥𝑧))
41, 3impbid 214 1 (𝑥 = 𝑦 → (𝑥𝑧𝑦𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115
This theorem depends on definitions:  df-bi 209  df-an 399  df-ex 1780
This theorem is referenced by:  elsb3  2121  cleljust  2122  ax12wdemo  2138  cleljustALT  2381  cleljustALT2  2382  dveel1  2483  axc14  2485  axsepgfromrep  5204  nalset  5220  zfpow  5270  zfun  7465  tz7.48lem  8080  unxpdomlem1  8725  pssnn  8739  zfinf  9105  aceq1  9546  aceq0  9547  aceq2  9548  dfac3  9550  dfac5lem2  9553  dfac5lem3  9554  dfac2a  9558  kmlem4  9582  zfac  9885  nd1  10012  axextnd  10016  axrepndlem1  10017  axrepndlem2  10018  axunndlem1  10020  axunnd  10021  axpowndlem2  10023  axpowndlem3  10024  axpowndlem4  10025  axregndlem1  10027  axregnd  10029  zfcndun  10040  zfcndpow  10041  zfcndinf  10043  zfcndac  10044  fpwwe2lem12  10066  axgroth3  10256  axgroth4  10257  nqereu  10354  mdetunilem9  21232  madugsum  21255  neiptopnei  21743  2ndc1stc  22062  nrmr0reg  22360  alexsubALTlem4  22661  xrsmopn  23423  itg2cn  24367  itgcn  24446  sqff1o  25762  dya2iocuni  31545  bnj849  32201  erdsze  32453  untsucf  32940  untangtr  32944  dfon2lem3  33034  dfon2lem6  33037  dfon2lem7  33038  dfon2  33041  axextdist  33048  distel  33052  neibastop2lem  33712  bj-elequ12  34016  bj-nfeel2  34182  bj-ru0  34257  prtlem5  36000  prtlem13  36008  prtlem16  36009  ax12el  36082  pw2f1ocnv  39640  aomclem8  39667  grumnud  40628  lcosslsp  44500
  Copyright terms: Public domain W3C validator