MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfi Structured version   Visualization version   GIF version

Theorem elfi 8476
Description: Specific properties of an element of (fi‘𝐵). (Contributed by FL, 27-Apr-2008.) (Revised by Mario Carneiro, 24-Nov-2013.)
Assertion
Ref Expression
elfi ((𝐴𝑉𝐵𝑊) → (𝐴 ∈ (fi‘𝐵) ↔ ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝐴 = 𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑉   𝑥,𝑊

Proof of Theorem elfi
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fival 8475 . . 3 (𝐵𝑊 → (fi‘𝐵) = {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝑦 = 𝑥})
21eleq2d 2817 . 2 (𝐵𝑊 → (𝐴 ∈ (fi‘𝐵) ↔ 𝐴 ∈ {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝑦 = 𝑥}))
3 eqeq1 2756 . . . 4 (𝑦 = 𝐴 → (𝑦 = 𝑥𝐴 = 𝑥))
43rexbidv 3182 . . 3 (𝑦 = 𝐴 → (∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝑦 = 𝑥 ↔ ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝐴 = 𝑥))
54elabg 3483 . 2 (𝐴𝑉 → (𝐴 ∈ {𝑦 ∣ ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝑦 = 𝑥} ↔ ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝐴 = 𝑥))
62, 5sylan9bbr 739 1 ((𝐴𝑉𝐵𝑊) → (𝐴 ∈ (fi‘𝐵) ↔ ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin)𝐴 = 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1624  wcel 2131  {cab 2738  wrex 3043  cin 3706  𝒫 cpw 4294   cint 4619  cfv 6041  Fincfn 8113  ficfi 8473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-ral 3047  df-rex 3048  df-rab 3051  df-v 3334  df-sbc 3569  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-op 4320  df-uni 4581  df-int 4620  df-br 4797  df-opab 4857  df-mpt 4874  df-id 5166  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-iota 6004  df-fun 6043  df-fv 6049  df-fi 8474
This theorem is referenced by:  elfi2  8477  elfir  8478  inelfi  8481  fiin  8485  dffi2  8486  elfiun  8493  subbascn  21252  cmpfi  21405  fbasfip  21865  alexsubALTlem4  22047  heibor1lem  33913  elrfi  37751
  Copyright terms: Public domain W3C validator