MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfilss Structured version   Visualization version   GIF version

Theorem elfilss 22478
Description: An element belongs to a filter iff any element below it does. (Contributed by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
elfilss ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝑋) → (𝐴𝐹 ↔ ∃𝑡𝐹 𝑡𝐴))
Distinct variable groups:   𝑡,𝐹   𝑡,𝑋   𝑡,𝐴

Proof of Theorem elfilss
StepHypRef Expression
1 ibar 531 . . 3 (𝐴𝑋 → (∃𝑡𝐹 𝑡𝐴 ↔ (𝐴𝑋 ∧ ∃𝑡𝐹 𝑡𝐴)))
21adantl 484 . 2 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝑋) → (∃𝑡𝐹 𝑡𝐴 ↔ (𝐴𝑋 ∧ ∃𝑡𝐹 𝑡𝐴)))
3 filfbas 22450 . . . 4 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋))
4 elfg 22473 . . . 4 (𝐹 ∈ (fBas‘𝑋) → (𝐴 ∈ (𝑋filGen𝐹) ↔ (𝐴𝑋 ∧ ∃𝑡𝐹 𝑡𝐴)))
53, 4syl 17 . . 3 (𝐹 ∈ (Fil‘𝑋) → (𝐴 ∈ (𝑋filGen𝐹) ↔ (𝐴𝑋 ∧ ∃𝑡𝐹 𝑡𝐴)))
65adantr 483 . 2 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝑋) → (𝐴 ∈ (𝑋filGen𝐹) ↔ (𝐴𝑋 ∧ ∃𝑡𝐹 𝑡𝐴)))
7 fgfil 22477 . . . 4 (𝐹 ∈ (Fil‘𝑋) → (𝑋filGen𝐹) = 𝐹)
87eleq2d 2898 . . 3 (𝐹 ∈ (Fil‘𝑋) → (𝐴 ∈ (𝑋filGen𝐹) ↔ 𝐴𝐹))
98adantr 483 . 2 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝑋) → (𝐴 ∈ (𝑋filGen𝐹) ↔ 𝐴𝐹))
102, 6, 93bitr2rd 310 1 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝐴𝑋) → (𝐴𝐹 ↔ ∃𝑡𝐹 𝑡𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wcel 2110  wrex 3139  wss 3936  cfv 6350  (class class class)co 7150  fBascfbas 20527  filGencfg 20528  Filcfil 22447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5455  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-iota 6309  df-fun 6352  df-fv 6358  df-ov 7153  df-oprab 7154  df-mpo 7155  df-fbas 20536  df-fg 20537  df-fil 22448
This theorem is referenced by:  trfil3  22490
  Copyright terms: Public domain W3C validator