MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfir Structured version   Visualization version   GIF version

Theorem elfir 8266
Description: Sufficient condition for an element of (fi‘𝐵). (Contributed by Mario Carneiro, 24-Nov-2013.)
Assertion
Ref Expression
elfir ((𝐵𝑉 ∧ (𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → 𝐴 ∈ (fi‘𝐵))

Proof of Theorem elfir
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp1 1059 . . . . . 6 ((𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → 𝐴𝐵)
2 elpw2g 4792 . . . . . 6 (𝐵𝑉 → (𝐴 ∈ 𝒫 𝐵𝐴𝐵))
31, 2syl5ibr 236 . . . . 5 (𝐵𝑉 → ((𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → 𝐴 ∈ 𝒫 𝐵))
43imp 445 . . . 4 ((𝐵𝑉 ∧ (𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → 𝐴 ∈ 𝒫 𝐵)
5 simpr3 1067 . . . 4 ((𝐵𝑉 ∧ (𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → 𝐴 ∈ Fin)
64, 5elind 3781 . . 3 ((𝐵𝑉 ∧ (𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → 𝐴 ∈ (𝒫 𝐵 ∩ Fin))
7 eqid 2626 . . 3 𝐴 = 𝐴
8 inteq 4448 . . . . 5 (𝑥 = 𝐴 𝑥 = 𝐴)
98eqeq2d 2636 . . . 4 (𝑥 = 𝐴 → ( 𝐴 = 𝑥 𝐴 = 𝐴))
109rspcev 3300 . . 3 ((𝐴 ∈ (𝒫 𝐵 ∩ Fin) ∧ 𝐴 = 𝐴) → ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin) 𝐴 = 𝑥)
116, 7, 10sylancl 693 . 2 ((𝐵𝑉 ∧ (𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin) 𝐴 = 𝑥)
12 simp2 1060 . . . 4 ((𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → 𝐴 ≠ ∅)
13 intex 4785 . . . 4 (𝐴 ≠ ∅ ↔ 𝐴 ∈ V)
1412, 13sylib 208 . . 3 ((𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → 𝐴 ∈ V)
15 id 22 . . 3 (𝐵𝑉𝐵𝑉)
16 elfi 8264 . . 3 (( 𝐴 ∈ V ∧ 𝐵𝑉) → ( 𝐴 ∈ (fi‘𝐵) ↔ ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin) 𝐴 = 𝑥))
1714, 15, 16syl2anr 495 . 2 ((𝐵𝑉 ∧ (𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → ( 𝐴 ∈ (fi‘𝐵) ↔ ∃𝑥 ∈ (𝒫 𝐵 ∩ Fin) 𝐴 = 𝑥))
1811, 17mpbird 247 1 ((𝐵𝑉 ∧ (𝐴𝐵𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin)) → 𝐴 ∈ (fi‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1992  wne 2796  wrex 2913  Vcvv 3191  cin 3559  wss 3560  c0 3896  𝒫 cpw 4135   cint 4445  cfv 5850  Fincfn 7900  ficfi 8261
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3193  df-sbc 3423  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-int 4446  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-iota 5813  df-fun 5852  df-fv 5858  df-fi 8262
This theorem is referenced by:  intrnfi  8267  ssfii  8270  elfiun  8281  ptbasfi  21289  fbssint  21547  filintn0  21570  alexsublem  21753  ispisys2  29989
  Copyright terms: Public domain W3C validator