MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfm2 Structured version   Visualization version   GIF version

Theorem elfm2 21662
Description: An element of a mapping filter. (Contributed by Jeff Hankins, 26-Sep-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Hypothesis
Ref Expression
elfm2.l 𝐿 = (𝑌filGen𝐵)
Assertion
Ref Expression
elfm2 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ (𝐴𝑋 ∧ ∃𝑥𝐿 (𝐹𝑥) ⊆ 𝐴)))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐶   𝑥,𝐹   𝑥,𝑋   𝑥,𝐴   𝑥,𝐿   𝑥,𝑌

Proof of Theorem elfm2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elfm 21661 . 2 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ (𝐴𝑋 ∧ ∃𝑦𝐵 (𝐹𝑦) ⊆ 𝐴)))
2 ssfg 21586 . . . . . . . . . 10 (𝐵 ∈ (fBas‘𝑌) → 𝐵 ⊆ (𝑌filGen𝐵))
3 elfm2.l . . . . . . . . . 10 𝐿 = (𝑌filGen𝐵)
42, 3syl6sseqr 3631 . . . . . . . . 9 (𝐵 ∈ (fBas‘𝑌) → 𝐵𝐿)
54sselda 3583 . . . . . . . 8 ((𝐵 ∈ (fBas‘𝑌) ∧ 𝑦𝐵) → 𝑦𝐿)
65adantrr 752 . . . . . . 7 ((𝐵 ∈ (fBas‘𝑌) ∧ (𝑦𝐵 ∧ (𝐹𝑦) ⊆ 𝐴)) → 𝑦𝐿)
763ad2antl2 1222 . . . . . 6 (((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝑦𝐵 ∧ (𝐹𝑦) ⊆ 𝐴)) → 𝑦𝐿)
8 simprr 795 . . . . . 6 (((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝑦𝐵 ∧ (𝐹𝑦) ⊆ 𝐴)) → (𝐹𝑦) ⊆ 𝐴)
9 imaeq2 5421 . . . . . . . 8 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
109sseq1d 3611 . . . . . . 7 (𝑥 = 𝑦 → ((𝐹𝑥) ⊆ 𝐴 ↔ (𝐹𝑦) ⊆ 𝐴))
1110rspcev 3295 . . . . . 6 ((𝑦𝐿 ∧ (𝐹𝑦) ⊆ 𝐴) → ∃𝑥𝐿 (𝐹𝑥) ⊆ 𝐴)
127, 8, 11syl2anc 692 . . . . 5 (((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝑦𝐵 ∧ (𝐹𝑦) ⊆ 𝐴)) → ∃𝑥𝐿 (𝐹𝑥) ⊆ 𝐴)
1312rexlimdvaa 3025 . . . 4 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (∃𝑦𝐵 (𝐹𝑦) ⊆ 𝐴 → ∃𝑥𝐿 (𝐹𝑥) ⊆ 𝐴))
143eleq2i 2690 . . . . . . . 8 (𝑥𝐿𝑥 ∈ (𝑌filGen𝐵))
15 elfg 21585 . . . . . . . 8 (𝐵 ∈ (fBas‘𝑌) → (𝑥 ∈ (𝑌filGen𝐵) ↔ (𝑥𝑌 ∧ ∃𝑦𝐵 𝑦𝑥)))
1614, 15syl5bb 272 . . . . . . 7 (𝐵 ∈ (fBas‘𝑌) → (𝑥𝐿 ↔ (𝑥𝑌 ∧ ∃𝑦𝐵 𝑦𝑥)))
17163ad2ant2 1081 . . . . . 6 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝑥𝐿 ↔ (𝑥𝑌 ∧ ∃𝑦𝐵 𝑦𝑥)))
18 imass2 5460 . . . . . . . . . . 11 (𝑦𝑥 → (𝐹𝑦) ⊆ (𝐹𝑥))
19 sstr2 3590 . . . . . . . . . . . . 13 ((𝐹𝑦) ⊆ (𝐹𝑥) → ((𝐹𝑥) ⊆ 𝐴 → (𝐹𝑦) ⊆ 𝐴))
2019com12 32 . . . . . . . . . . . 12 ((𝐹𝑥) ⊆ 𝐴 → ((𝐹𝑦) ⊆ (𝐹𝑥) → (𝐹𝑦) ⊆ 𝐴))
2120ad2antll 764 . . . . . . . . . . 11 (((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ⊆ 𝐴)) → ((𝐹𝑦) ⊆ (𝐹𝑥) → (𝐹𝑦) ⊆ 𝐴))
2218, 21syl5 34 . . . . . . . . . 10 (((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ⊆ 𝐴)) → (𝑦𝑥 → (𝐹𝑦) ⊆ 𝐴))
2322reximdv 3010 . . . . . . . . 9 (((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ (𝑥𝑌 ∧ (𝐹𝑥) ⊆ 𝐴)) → (∃𝑦𝐵 𝑦𝑥 → ∃𝑦𝐵 (𝐹𝑦) ⊆ 𝐴))
2423expr 642 . . . . . . . 8 (((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑥𝑌) → ((𝐹𝑥) ⊆ 𝐴 → (∃𝑦𝐵 𝑦𝑥 → ∃𝑦𝐵 (𝐹𝑦) ⊆ 𝐴)))
2524com23 86 . . . . . . 7 (((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑥𝑌) → (∃𝑦𝐵 𝑦𝑥 → ((𝐹𝑥) ⊆ 𝐴 → ∃𝑦𝐵 (𝐹𝑦) ⊆ 𝐴)))
2625expimpd 628 . . . . . 6 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑥𝑌 ∧ ∃𝑦𝐵 𝑦𝑥) → ((𝐹𝑥) ⊆ 𝐴 → ∃𝑦𝐵 (𝐹𝑦) ⊆ 𝐴)))
2717, 26sylbid 230 . . . . 5 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝑥𝐿 → ((𝐹𝑥) ⊆ 𝐴 → ∃𝑦𝐵 (𝐹𝑦) ⊆ 𝐴)))
2827rexlimdv 3023 . . . 4 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (∃𝑥𝐿 (𝐹𝑥) ⊆ 𝐴 → ∃𝑦𝐵 (𝐹𝑦) ⊆ 𝐴))
2913, 28impbid 202 . . 3 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (∃𝑦𝐵 (𝐹𝑦) ⊆ 𝐴 ↔ ∃𝑥𝐿 (𝐹𝑥) ⊆ 𝐴))
3029anbi2d 739 . 2 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝐴𝑋 ∧ ∃𝑦𝐵 (𝐹𝑦) ⊆ 𝐴) ↔ (𝐴𝑋 ∧ ∃𝑥𝐿 (𝐹𝑥) ⊆ 𝐴)))
311, 30bitrd 268 1 ((𝑋𝐶𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝑋 FilMap 𝐹)‘𝐵) ↔ (𝐴𝑋 ∧ ∃𝑥𝐿 (𝐹𝑥) ⊆ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wrex 2908  wss 3555  cima 5077  wf 5843  cfv 5847  (class class class)co 6604  fBascfbas 19653  filGencfg 19654   FilMap cfm 21647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-fbas 19662  df-fg 19663  df-fm 21652
This theorem is referenced by:  fmfg  21663  elfm3  21664  imaelfm  21665
  Copyright terms: Public domain W3C validator