Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elfuns Structured version   Visualization version   GIF version

Theorem elfuns 32328
Description: Membership in the class of all functions. (Contributed by Scott Fenton, 18-Feb-2013.)
Hypothesis
Ref Expression
elfuns.1 𝐹 ∈ V
Assertion
Ref Expression
elfuns (𝐹 Funs ↔ Fun 𝐹)

Proof of Theorem elfuns
Dummy variables 𝑎 𝑥 𝑦 𝑧 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elrel 5379 . . . . . . . . . . 11 ((Rel 𝐹𝑝𝐹) → ∃𝑥𝑦 𝑝 = ⟨𝑥, 𝑦⟩)
21ex 449 . . . . . . . . . 10 (Rel 𝐹 → (𝑝𝐹 → ∃𝑥𝑦 𝑝 = ⟨𝑥, 𝑦⟩))
3 elrel 5379 . . . . . . . . . . 11 ((Rel 𝐹𝑞𝐹) → ∃𝑎𝑧 𝑞 = ⟨𝑎, 𝑧⟩)
43ex 449 . . . . . . . . . 10 (Rel 𝐹 → (𝑞𝐹 → ∃𝑎𝑧 𝑞 = ⟨𝑎, 𝑧⟩))
52, 4anim12d 587 . . . . . . . . 9 (Rel 𝐹 → ((𝑝𝐹𝑞𝐹) → (∃𝑥𝑦 𝑝 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑎𝑧 𝑞 = ⟨𝑎, 𝑧⟩)))
65adantrd 485 . . . . . . . 8 (Rel 𝐹 → (((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝) → (∃𝑥𝑦 𝑝 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑎𝑧 𝑞 = ⟨𝑎, 𝑧⟩)))
76pm4.71rd 670 . . . . . . 7 (Rel 𝐹 → (((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝) ↔ ((∃𝑥𝑦 𝑝 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑎𝑧 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝))))
8 19.41vvvv 2029 . . . . . . . 8 (∃𝑥𝑦𝑎𝑧((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)) ↔ (∃𝑥𝑦𝑎𝑧(𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)))
9 ee4anv 2329 . . . . . . . . 9 (∃𝑥𝑦𝑎𝑧(𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ↔ (∃𝑥𝑦 𝑝 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑎𝑧 𝑞 = ⟨𝑎, 𝑧⟩))
109anbi1i 733 . . . . . . . 8 ((∃𝑥𝑦𝑎𝑧(𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)) ↔ ((∃𝑥𝑦 𝑝 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑎𝑧 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)))
118, 10bitr2i 265 . . . . . . 7 (((∃𝑥𝑦 𝑝 = ⟨𝑥, 𝑦⟩ ∧ ∃𝑎𝑧 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)) ↔ ∃𝑥𝑦𝑎𝑧((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)))
127, 11syl6bb 276 . . . . . 6 (Rel 𝐹 → (((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝) ↔ ∃𝑥𝑦𝑎𝑧((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝))))
13122exbidv 2001 . . . . 5 (Rel 𝐹 → (∃𝑝𝑞((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝) ↔ ∃𝑝𝑞𝑥𝑦𝑎𝑧((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝))))
14 excom13 2193 . . . . . 6 (∃𝑝𝑞𝑥𝑦𝑎𝑧((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)) ↔ ∃𝑥𝑞𝑝𝑦𝑎𝑧((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)))
15 excom13 2193 . . . . . . . 8 (∃𝑞𝑝𝑦𝑎𝑧((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)) ↔ ∃𝑦𝑝𝑞𝑎𝑧((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)))
16 exrot4 2195 . . . . . . . . . 10 (∃𝑝𝑞𝑎𝑧((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)) ↔ ∃𝑎𝑧𝑝𝑞((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)))
17 excom 2191 . . . . . . . . . 10 (∃𝑎𝑧𝑝𝑞((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)) ↔ ∃𝑧𝑎𝑝𝑞((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)))
18 df-3an 1074 . . . . . . . . . . . . . . . 16 ((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩ ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)) ↔ ((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)))
19182exbii 1924 . . . . . . . . . . . . . . 15 (∃𝑝𝑞(𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩ ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)) ↔ ∃𝑝𝑞((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)))
20 opex 5081 . . . . . . . . . . . . . . . 16 𝑥, 𝑦⟩ ∈ V
21 opex 5081 . . . . . . . . . . . . . . . 16 𝑎, 𝑧⟩ ∈ V
22 eleq1 2827 . . . . . . . . . . . . . . . . . 18 (𝑝 = ⟨𝑥, 𝑦⟩ → (𝑝𝐹 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐹))
2322anbi1d 743 . . . . . . . . . . . . . . . . 17 (𝑝 = ⟨𝑥, 𝑦⟩ → ((𝑝𝐹𝑞𝐹) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐹𝑞𝐹)))
24 breq2 4808 . . . . . . . . . . . . . . . . 17 (𝑝 = ⟨𝑥, 𝑦⟩ → (𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))⟨𝑥, 𝑦⟩))
2523, 24anbi12d 749 . . . . . . . . . . . . . . . 16 (𝑝 = ⟨𝑥, 𝑦⟩ → (((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝) ↔ ((⟨𝑥, 𝑦⟩ ∈ 𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))⟨𝑥, 𝑦⟩)))
26 eleq1 2827 . . . . . . . . . . . . . . . . . . 19 (𝑞 = ⟨𝑎, 𝑧⟩ → (𝑞𝐹 ↔ ⟨𝑎, 𝑧⟩ ∈ 𝐹))
2726anbi2d 742 . . . . . . . . . . . . . . . . . 18 (𝑞 = ⟨𝑎, 𝑧⟩ → ((⟨𝑥, 𝑦⟩ ∈ 𝐹𝑞𝐹) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑎, 𝑧⟩ ∈ 𝐹)))
28 breq1 4807 . . . . . . . . . . . . . . . . . . 19 (𝑞 = ⟨𝑎, 𝑧⟩ → (𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))⟨𝑥, 𝑦⟩ ↔ ⟨𝑎, 𝑧⟩(1st ⊗ ((V ∖ I ) ∘ 2nd ))⟨𝑥, 𝑦⟩))
29 vex 3343 . . . . . . . . . . . . . . . . . . . . 21 𝑥 ∈ V
30 vex 3343 . . . . . . . . . . . . . . . . . . . . 21 𝑦 ∈ V
3121, 29, 30brtxp 32293 . . . . . . . . . . . . . . . . . . . 20 (⟨𝑎, 𝑧⟩(1st ⊗ ((V ∖ I ) ∘ 2nd ))⟨𝑥, 𝑦⟩ ↔ (⟨𝑎, 𝑧⟩1st 𝑥 ∧ ⟨𝑎, 𝑧⟩((V ∖ I ) ∘ 2nd )𝑦))
32 vex 3343 . . . . . . . . . . . . . . . . . . . . . . 23 𝑎 ∈ V
33 vex 3343 . . . . . . . . . . . . . . . . . . . . . . 23 𝑧 ∈ V
3432, 33br1steq 31977 . . . . . . . . . . . . . . . . . . . . . 22 (⟨𝑎, 𝑧⟩1st 𝑥𝑥 = 𝑎)
35 equcom 2100 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑎𝑎 = 𝑥)
3634, 35bitri 264 . . . . . . . . . . . . . . . . . . . . 21 (⟨𝑎, 𝑧⟩1st 𝑥𝑎 = 𝑥)
3721, 30brco 5448 . . . . . . . . . . . . . . . . . . . . . 22 (⟨𝑎, 𝑧⟩((V ∖ I ) ∘ 2nd )𝑦 ↔ ∃𝑥(⟨𝑎, 𝑧⟩2nd 𝑥𝑥(V ∖ I )𝑦))
3832, 33br2ndeq 31978 . . . . . . . . . . . . . . . . . . . . . . . 24 (⟨𝑎, 𝑧⟩2nd 𝑥𝑥 = 𝑧)
3938anbi1i 733 . . . . . . . . . . . . . . . . . . . . . . 23 ((⟨𝑎, 𝑧⟩2nd 𝑥𝑥(V ∖ I )𝑦) ↔ (𝑥 = 𝑧𝑥(V ∖ I )𝑦))
4039exbii 1923 . . . . . . . . . . . . . . . . . . . . . 22 (∃𝑥(⟨𝑎, 𝑧⟩2nd 𝑥𝑥(V ∖ I )𝑦) ↔ ∃𝑥(𝑥 = 𝑧𝑥(V ∖ I )𝑦))
41 breq1 4807 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝑧 → (𝑥(V ∖ I )𝑦𝑧(V ∖ I )𝑦))
42 brv 5089 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑧V𝑦
43 brdif 4857 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧(V ∖ I )𝑦 ↔ (𝑧V𝑦 ∧ ¬ 𝑧 I 𝑦))
4442, 43mpbiran 991 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧(V ∖ I )𝑦 ↔ ¬ 𝑧 I 𝑦)
4530ideq 5430 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 I 𝑦𝑧 = 𝑦)
46 equcom 2100 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 = 𝑦𝑦 = 𝑧)
4745, 46bitri 264 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 I 𝑦𝑦 = 𝑧)
4847notbii 309 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑧 I 𝑦 ↔ ¬ 𝑦 = 𝑧)
4944, 48bitri 264 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧(V ∖ I )𝑦 ↔ ¬ 𝑦 = 𝑧)
5041, 49syl6bb 276 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑧 → (𝑥(V ∖ I )𝑦 ↔ ¬ 𝑦 = 𝑧))
5150equsexvw 2087 . . . . . . . . . . . . . . . . . . . . . 22 (∃𝑥(𝑥 = 𝑧𝑥(V ∖ I )𝑦) ↔ ¬ 𝑦 = 𝑧)
5237, 40, 513bitri 286 . . . . . . . . . . . . . . . . . . . . 21 (⟨𝑎, 𝑧⟩((V ∖ I ) ∘ 2nd )𝑦 ↔ ¬ 𝑦 = 𝑧)
5336, 52anbi12i 735 . . . . . . . . . . . . . . . . . . . 20 ((⟨𝑎, 𝑧⟩1st 𝑥 ∧ ⟨𝑎, 𝑧⟩((V ∖ I ) ∘ 2nd )𝑦) ↔ (𝑎 = 𝑥 ∧ ¬ 𝑦 = 𝑧))
5431, 53bitri 264 . . . . . . . . . . . . . . . . . . 19 (⟨𝑎, 𝑧⟩(1st ⊗ ((V ∖ I ) ∘ 2nd ))⟨𝑥, 𝑦⟩ ↔ (𝑎 = 𝑥 ∧ ¬ 𝑦 = 𝑧))
5528, 54syl6bb 276 . . . . . . . . . . . . . . . . . 18 (𝑞 = ⟨𝑎, 𝑧⟩ → (𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))⟨𝑥, 𝑦⟩ ↔ (𝑎 = 𝑥 ∧ ¬ 𝑦 = 𝑧)))
5627, 55anbi12d 749 . . . . . . . . . . . . . . . . 17 (𝑞 = ⟨𝑎, 𝑧⟩ → (((⟨𝑥, 𝑦⟩ ∈ 𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))⟨𝑥, 𝑦⟩) ↔ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑎, 𝑧⟩ ∈ 𝐹) ∧ (𝑎 = 𝑥 ∧ ¬ 𝑦 = 𝑧))))
57 an12 873 . . . . . . . . . . . . . . . . 17 (((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑎, 𝑧⟩ ∈ 𝐹) ∧ (𝑎 = 𝑥 ∧ ¬ 𝑦 = 𝑧)) ↔ (𝑎 = 𝑥 ∧ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑎, 𝑧⟩ ∈ 𝐹) ∧ ¬ 𝑦 = 𝑧)))
5856, 57syl6bb 276 . . . . . . . . . . . . . . . 16 (𝑞 = ⟨𝑎, 𝑧⟩ → (((⟨𝑥, 𝑦⟩ ∈ 𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))⟨𝑥, 𝑦⟩) ↔ (𝑎 = 𝑥 ∧ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑎, 𝑧⟩ ∈ 𝐹) ∧ ¬ 𝑦 = 𝑧))))
5920, 21, 25, 58ceqsex2v 3385 . . . . . . . . . . . . . . 15 (∃𝑝𝑞(𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩ ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)) ↔ (𝑎 = 𝑥 ∧ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑎, 𝑧⟩ ∈ 𝐹) ∧ ¬ 𝑦 = 𝑧)))
6019, 59bitr3i 266 . . . . . . . . . . . . . 14 (∃𝑝𝑞((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)) ↔ (𝑎 = 𝑥 ∧ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑎, 𝑧⟩ ∈ 𝐹) ∧ ¬ 𝑦 = 𝑧)))
6160exbii 1923 . . . . . . . . . . . . 13 (∃𝑎𝑝𝑞((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)) ↔ ∃𝑎(𝑎 = 𝑥 ∧ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑎, 𝑧⟩ ∈ 𝐹) ∧ ¬ 𝑦 = 𝑧)))
62 opeq1 4553 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑥 → ⟨𝑎, 𝑧⟩ = ⟨𝑥, 𝑧⟩)
6362eleq1d 2824 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑥 → (⟨𝑎, 𝑧⟩ ∈ 𝐹 ↔ ⟨𝑥, 𝑧⟩ ∈ 𝐹))
6463anbi2d 742 . . . . . . . . . . . . . . 15 (𝑎 = 𝑥 → ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑎, 𝑧⟩ ∈ 𝐹) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹)))
6564anbi1d 743 . . . . . . . . . . . . . 14 (𝑎 = 𝑥 → (((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑎, 𝑧⟩ ∈ 𝐹) ∧ ¬ 𝑦 = 𝑧) ↔ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∧ ¬ 𝑦 = 𝑧)))
6665equsexvw 2087 . . . . . . . . . . . . 13 (∃𝑎(𝑎 = 𝑥 ∧ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑎, 𝑧⟩ ∈ 𝐹) ∧ ¬ 𝑦 = 𝑧)) ↔ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∧ ¬ 𝑦 = 𝑧))
6761, 66bitri 264 . . . . . . . . . . . 12 (∃𝑎𝑝𝑞((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)) ↔ ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∧ ¬ 𝑦 = 𝑧))
6867exbii 1923 . . . . . . . . . . 11 (∃𝑧𝑎𝑝𝑞((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)) ↔ ∃𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∧ ¬ 𝑦 = 𝑧))
69 exanali 1935 . . . . . . . . . . 11 (∃𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) ∧ ¬ 𝑦 = 𝑧) ↔ ¬ ∀𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧))
7068, 69bitri 264 . . . . . . . . . 10 (∃𝑧𝑎𝑝𝑞((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)) ↔ ¬ ∀𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧))
7116, 17, 703bitri 286 . . . . . . . . 9 (∃𝑝𝑞𝑎𝑧((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)) ↔ ¬ ∀𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧))
7271exbii 1923 . . . . . . . 8 (∃𝑦𝑝𝑞𝑎𝑧((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)) ↔ ∃𝑦 ¬ ∀𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧))
73 exnal 1903 . . . . . . . 8 (∃𝑦 ¬ ∀𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧) ↔ ¬ ∀𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧))
7415, 72, 733bitri 286 . . . . . . 7 (∃𝑞𝑝𝑦𝑎𝑧((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)) ↔ ¬ ∀𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧))
7574exbii 1923 . . . . . 6 (∃𝑥𝑞𝑝𝑦𝑎𝑧((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)) ↔ ∃𝑥 ¬ ∀𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧))
76 exnal 1903 . . . . . 6 (∃𝑥 ¬ ∀𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧) ↔ ¬ ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧))
7714, 75, 763bitri 286 . . . . 5 (∃𝑝𝑞𝑥𝑦𝑎𝑧((𝑝 = ⟨𝑥, 𝑦⟩ ∧ 𝑞 = ⟨𝑎, 𝑧⟩) ∧ ((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)) ↔ ¬ ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧))
7813, 77syl6bb 276 . . . 4 (Rel 𝐹 → (∃𝑝𝑞((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝) ↔ ¬ ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧)))
7978con2bid 343 . . 3 (Rel 𝐹 → (∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧) ↔ ¬ ∃𝑝𝑞((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)))
8079pm5.32i 672 . 2 ((Rel 𝐹 ∧ ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧)) ↔ (Rel 𝐹 ∧ ¬ ∃𝑝𝑞((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)))
81 dffun4 6061 . 2 (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥𝑦𝑧((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐹) → 𝑦 = 𝑧)))
82 df-funs 32274 . . . 4 Funs = (𝒫 (V × V) ∖ Fix ( E ∘ ((1st ⊗ ((V ∖ I ) ∘ 2nd )) ∘ E )))
8382eleq2i 2831 . . 3 (𝐹 Funs 𝐹 ∈ (𝒫 (V × V) ∖ Fix ( E ∘ ((1st ⊗ ((V ∖ I ) ∘ 2nd )) ∘ E ))))
84 eldif 3725 . . 3 (𝐹 ∈ (𝒫 (V × V) ∖ Fix ( E ∘ ((1st ⊗ ((V ∖ I ) ∘ 2nd )) ∘ E ))) ↔ (𝐹 ∈ 𝒫 (V × V) ∧ ¬ 𝐹 Fix ( E ∘ ((1st ⊗ ((V ∖ I ) ∘ 2nd )) ∘ E ))))
85 elfuns.1 . . . . . 6 𝐹 ∈ V
8685elpw 4308 . . . . 5 (𝐹 ∈ 𝒫 (V × V) ↔ 𝐹 ⊆ (V × V))
87 df-rel 5273 . . . . 5 (Rel 𝐹𝐹 ⊆ (V × V))
8886, 87bitr4i 267 . . . 4 (𝐹 ∈ 𝒫 (V × V) ↔ Rel 𝐹)
8985elfix 32316 . . . . . 6 (𝐹 Fix ( E ∘ ((1st ⊗ ((V ∖ I ) ∘ 2nd )) ∘ E )) ↔ 𝐹( E ∘ ((1st ⊗ ((V ∖ I ) ∘ 2nd )) ∘ E ))𝐹)
9085, 85coep 31948 . . . . . . 7 (𝐹( E ∘ ((1st ⊗ ((V ∖ I ) ∘ 2nd )) ∘ E ))𝐹 ↔ ∃𝑝𝐹 𝐹((1st ⊗ ((V ∖ I ) ∘ 2nd )) ∘ E )𝑝)
91 vex 3343 . . . . . . . . 9 𝑝 ∈ V
9285, 91coepr 31949 . . . . . . . 8 (𝐹((1st ⊗ ((V ∖ I ) ∘ 2nd )) ∘ E )𝑝 ↔ ∃𝑞𝐹 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)
9392rexbii 3179 . . . . . . 7 (∃𝑝𝐹 𝐹((1st ⊗ ((V ∖ I ) ∘ 2nd )) ∘ E )𝑝 ↔ ∃𝑝𝐹𝑞𝐹 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)
9490, 93bitri 264 . . . . . 6 (𝐹( E ∘ ((1st ⊗ ((V ∖ I ) ∘ 2nd )) ∘ E ))𝐹 ↔ ∃𝑝𝐹𝑞𝐹 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)
95 r2ex 3199 . . . . . 6 (∃𝑝𝐹𝑞𝐹 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝 ↔ ∃𝑝𝑞((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝))
9689, 94, 953bitri 286 . . . . 5 (𝐹 Fix ( E ∘ ((1st ⊗ ((V ∖ I ) ∘ 2nd )) ∘ E )) ↔ ∃𝑝𝑞((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝))
9796notbii 309 . . . 4 𝐹 Fix ( E ∘ ((1st ⊗ ((V ∖ I ) ∘ 2nd )) ∘ E )) ↔ ¬ ∃𝑝𝑞((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝))
9888, 97anbi12i 735 . . 3 ((𝐹 ∈ 𝒫 (V × V) ∧ ¬ 𝐹 Fix ( E ∘ ((1st ⊗ ((V ∖ I ) ∘ 2nd )) ∘ E ))) ↔ (Rel 𝐹 ∧ ¬ ∃𝑝𝑞((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)))
9983, 84, 983bitri 286 . 2 (𝐹 Funs ↔ (Rel 𝐹 ∧ ¬ ∃𝑝𝑞((𝑝𝐹𝑞𝐹) ∧ 𝑞(1st ⊗ ((V ∖ I ) ∘ 2nd ))𝑝)))
10080, 81, 993bitr4ri 293 1 (𝐹 Funs ↔ Fun 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1072  wal 1630   = wceq 1632  wex 1853  wcel 2139  wrex 3051  Vcvv 3340  cdif 3712  wss 3715  𝒫 cpw 4302  cop 4327   class class class wbr 4804   I cid 5173   E cep 5178   × cxp 5264  ccnv 5265  ccom 5270  Rel wrel 5271  Fun wfun 6043  1st c1st 7331  2nd c2nd 7332  ctxp 32243   Fix cfix 32248   Funs cfuns 32250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-eprel 5179  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-fo 6055  df-fv 6057  df-1st 7333  df-2nd 7334  df-txp 32267  df-fix 32272  df-funs 32274
This theorem is referenced by:  elfunsg  32329  dfrecs2  32363  dfrdg4  32364
  Copyright terms: Public domain W3C validator