MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfz Structured version   Visualization version   GIF version

Theorem elfz 12274
Description: Membership in a finite set of sequential integers. (Contributed by NM, 29-Sep-2005.)
Assertion
Ref Expression
elfz ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝑀𝐾𝐾𝑁)))

Proof of Theorem elfz
StepHypRef Expression
1 elfz1 12273 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾𝑁)))
2 3anass 1040 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾𝑁) ↔ (𝐾 ∈ ℤ ∧ (𝑀𝐾𝐾𝑁)))
32baib 943 . . . 4 (𝐾 ∈ ℤ → ((𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾𝑁) ↔ (𝑀𝐾𝐾𝑁)))
41, 3sylan9bb 735 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝑀𝐾𝐾𝑁)))
543impa 1256 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝑀𝐾𝐾𝑁)))
653comr 1270 1 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝑀𝐾𝐾𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036  wcel 1987   class class class wbr 4613  (class class class)co 6604  cle 10019  cz 11321  ...cfz 12268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pr 4867  ax-cnex 9936  ax-resscn 9937
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3418  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-br 4614  df-opab 4674  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-iota 5810  df-fun 5849  df-fv 5855  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-neg 10213  df-z 11322  df-fz 12269
This theorem is referenced by:  elfz5  12276  fzadd2  12318  fznatpl1  12337  fzrev  12345  fzctr  12392  elfzo  12413  seqf1olem1  12780  bcval5  13045  isprm3  15320  hashdvds  15404  eulerthlem2  15411  prmreclem5  15548  aannenlem1  23987  basellem3  24709  chtub  24837  bcmono  24902  bposlem1  24909  lgseisenlem1  25000  lgsquadlem1  25005  2lgslem1a  25016  axlowdimlem3  25724  axlowdimlem7  25728  axlowdimlem16  25737  axlowdimlem17  25738  axlowdim  25741  submateqlem1  29652  lmatfvlem  29660  bcneg1  31327  poimirlem15  33053  poimirlem24  33062  poimirlem28  33066  mblfinlem2  33076  itg2addnclem2  33091  fzmul  33166  cntotbnd  33224  fzsplit1nn0  36794  irrapxlem3  36865  pellexlem5  36874  acongrep  37024  fzneg  37026  jm2.23  37040  fmul01  39213  fmuldfeq  39216  stoweidlem26  39547  fourierdlem11  39639  fourierdlem12  39640  fourierdlem15  39643  fourierdlem79  39706  smfmullem4  40305  pfxccat3a  40725
  Copyright terms: Public domain W3C validator