MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfz Structured version   Visualization version   GIF version

Theorem elfz 12446
Description: Membership in a finite set of sequential integers. (Contributed by NM, 29-Sep-2005.)
Assertion
Ref Expression
elfz ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝑀𝐾𝐾𝑁)))

Proof of Theorem elfz
StepHypRef Expression
1 elfz1 12445 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾𝑁)))
2 3anass 1081 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾𝑁) ↔ (𝐾 ∈ ℤ ∧ (𝑀𝐾𝐾𝑁)))
32baib 982 . . . 4 (𝐾 ∈ ℤ → ((𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾𝑁) ↔ (𝑀𝐾𝐾𝑁)))
41, 3sylan9bb 738 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝑀𝐾𝐾𝑁)))
543impa 1100 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝑀𝐾𝐾𝑁)))
653comr 1119 1 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝑀𝐾𝐾𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072  wcel 2103   class class class wbr 4760  (class class class)co 6765  cle 10188  cz 11490  ...cfz 12440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-sep 4889  ax-nul 4897  ax-pr 5011  ax-cnex 10105  ax-resscn 10106
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ral 3019  df-rex 3020  df-rab 3023  df-v 3306  df-sbc 3542  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-nul 4024  df-if 4195  df-sn 4286  df-pr 4288  df-op 4292  df-uni 4545  df-br 4761  df-opab 4821  df-id 5128  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-iota 5964  df-fun 6003  df-fv 6009  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-neg 10382  df-z 11491  df-fz 12441
This theorem is referenced by:  elfz5  12448  fzadd2  12490  fznatpl1  12509  fzrev  12517  fzctr  12566  elfzo  12587  seqf1olem1  12955  bcval5  13220  isprm3  15519  hashdvds  15603  eulerthlem2  15610  prmreclem5  15747  aannenlem1  24203  basellem3  24929  chtub  25057  bcmono  25122  bposlem1  25129  lgseisenlem1  25220  lgsquadlem1  25225  2lgslem1a  25236  axlowdimlem3  25944  axlowdimlem7  25948  axlowdimlem16  25957  axlowdimlem17  25958  axlowdim  25961  submateqlem1  30103  lmatfvlem  30111  bcneg1  31850  poimirlem15  33656  poimirlem24  33665  poimirlem28  33669  mblfinlem2  33679  itg2addnclem2  33694  fzmul  33769  cntotbnd  33827  fzsplit1nn0  37736  irrapxlem3  37807  pellexlem5  37816  acongrep  37966  fzneg  37968  jm2.23  37982  fmul01  40232  fmuldfeq  40235  stoweidlem26  40663  fourierdlem11  40755  fourierdlem12  40756  fourierdlem15  40759  fourierdlem79  40822  smfmullem4  41424  pfxccat3a  41856
  Copyright terms: Public domain W3C validator