MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfz1 Structured version   Visualization version   GIF version

Theorem elfz1 12900
Description: Membership in a finite set of sequential integers. (Contributed by NM, 21-Jul-2005.)
Assertion
Ref Expression
elfz1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾𝑁)))

Proof of Theorem elfz1
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 fzval 12897 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) = {𝑗 ∈ ℤ ∣ (𝑀𝑗𝑗𝑁)})
21eleq2d 2900 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ 𝐾 ∈ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝑗𝑁)}))
3 breq2 5072 . . . . 5 (𝑗 = 𝐾 → (𝑀𝑗𝑀𝐾))
4 breq1 5071 . . . . 5 (𝑗 = 𝐾 → (𝑗𝑁𝐾𝑁))
53, 4anbi12d 632 . . . 4 (𝑗 = 𝐾 → ((𝑀𝑗𝑗𝑁) ↔ (𝑀𝐾𝐾𝑁)))
65elrab 3682 . . 3 (𝐾 ∈ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝑗𝑁)} ↔ (𝐾 ∈ ℤ ∧ (𝑀𝐾𝐾𝑁)))
7 3anass 1091 . . 3 ((𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾𝑁) ↔ (𝐾 ∈ ℤ ∧ (𝑀𝐾𝐾𝑁)))
86, 7bitr4i 280 . 2 (𝐾 ∈ {𝑗 ∈ ℤ ∣ (𝑀𝑗𝑗𝑁)} ↔ (𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾𝑁))
92, 8syl6bb 289 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  {crab 3144   class class class wbr 5068  (class class class)co 7158  cle 10678  cz 11984  ...cfz 12895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pr 5332  ax-cnex 10595  ax-resscn 10596
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-iota 6316  df-fun 6359  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-neg 10875  df-z 11985  df-fz 12896
This theorem is referenced by:  elfz  12901  elfz2  12902  fzen  12927  fzaddel  12944  fzadd2  12945  elfzm11  12981  fznn0  13002  phicl2  16107  nndiffz1  30511  fzmul  35018  fz1eqin  39373  jm2.27dlem2  39614  iblspltprt  42265  itgspltprt  42271
  Copyright terms: Public domain W3C validator