MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfz1b Structured version   Visualization version   GIF version

Theorem elfz1b 12979
Description: Membership in a 1-based finite set of sequential integers. (Contributed by AV, 30-Oct-2018.) (Proof shortened by AV, 23-Jan-2022.)
Assertion
Ref Expression
elfz1b (𝑁 ∈ (1...𝑀) ↔ (𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁𝑀))

Proof of Theorem elfz1b
StepHypRef Expression
1 elfz2 12902 . . . 4 (𝑁 ∈ (1...𝑀) ↔ ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 ≤ 𝑁𝑁𝑀)))
2 simpl2 1188 . . . . 5 (((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 ≤ 𝑁𝑁𝑀)) → 𝑀 ∈ ℤ)
3 1red 10644 . . . . . . 7 ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 1 ∈ ℝ)
4 zre 11988 . . . . . . . 8 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
543ad2ant3 1131 . . . . . . 7 ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℝ)
6 zre 11988 . . . . . . . 8 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
763ad2ant2 1130 . . . . . . 7 ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℝ)
8 letr 10736 . . . . . . 7 ((1 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) → ((1 ≤ 𝑁𝑁𝑀) → 1 ≤ 𝑀))
93, 5, 7, 8syl3anc 1367 . . . . . 6 ((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((1 ≤ 𝑁𝑁𝑀) → 1 ≤ 𝑀))
109imp 409 . . . . 5 (((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 ≤ 𝑁𝑁𝑀)) → 1 ≤ 𝑀)
11 elnnz1 12011 . . . . 5 (𝑀 ∈ ℕ ↔ (𝑀 ∈ ℤ ∧ 1 ≤ 𝑀))
122, 10, 11sylanbrc 585 . . . 4 (((1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (1 ≤ 𝑁𝑁𝑀)) → 𝑀 ∈ ℕ)
131, 12sylbi 219 . . 3 (𝑁 ∈ (1...𝑀) → 𝑀 ∈ ℕ)
14 elfzel2 12909 . . . 4 (𝑁 ∈ (1...𝑀) → 𝑀 ∈ ℤ)
15 fznn 12978 . . . . 5 (𝑀 ∈ ℤ → (𝑁 ∈ (1...𝑀) ↔ (𝑁 ∈ ℕ ∧ 𝑁𝑀)))
1615biimpd 231 . . . 4 (𝑀 ∈ ℤ → (𝑁 ∈ (1...𝑀) → (𝑁 ∈ ℕ ∧ 𝑁𝑀)))
1714, 16mpcom 38 . . 3 (𝑁 ∈ (1...𝑀) → (𝑁 ∈ ℕ ∧ 𝑁𝑀))
18 3anan12 1092 . . 3 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁𝑀) ↔ (𝑀 ∈ ℕ ∧ (𝑁 ∈ ℕ ∧ 𝑁𝑀)))
1913, 17, 18sylanbrc 585 . 2 (𝑁 ∈ (1...𝑀) → (𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁𝑀))
20 nnz 12007 . . . . . 6 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
2120, 15syl 17 . . . . 5 (𝑀 ∈ ℕ → (𝑁 ∈ (1...𝑀) ↔ (𝑁 ∈ ℕ ∧ 𝑁𝑀)))
2221biimprd 250 . . . 4 (𝑀 ∈ ℕ → ((𝑁 ∈ ℕ ∧ 𝑁𝑀) → 𝑁 ∈ (1...𝑀)))
2322expd 418 . . 3 (𝑀 ∈ ℕ → (𝑁 ∈ ℕ → (𝑁𝑀𝑁 ∈ (1...𝑀))))
24233imp21 1110 . 2 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁𝑀) → 𝑁 ∈ (1...𝑀))
2519, 24impbii 211 1 (𝑁 ∈ (1...𝑀) ↔ (𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083  wcel 2114   class class class wbr 5068  (class class class)co 7158  cr 10538  1c1 10540  cle 10678  cn 11640  cz 11984  ...cfz 12895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-z 11985  df-uz 12247  df-fz 12896
This theorem is referenced by:  ubmelfzo  13105  cshwidxm  14172  cshwidxn  14173  gausslemma2dlem1a  25943  gausslemma2dlem2  25945  gausslemma2dlem4  25947  dlwwlknondlwlknonf1olem1  28145  pmtrto1cl  30743  psgnfzto1stlem  30744  fzto1st  30747  psgnfzto1st  30749  hgt750lemb  31929  poimirlem32  34926
  Copyright terms: Public domain W3C validator