Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elfz2z Structured version   Visualization version   GIF version

Theorem elfz2z 43514
Description: Membership of an integer in a finite set of sequential integers starting at 0. (Contributed by Alexander van der Vekens, 25-May-2018.)
Assertion
Ref Expression
elfz2z ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (0...𝑁) ↔ (0 ≤ 𝐾𝐾𝑁)))

Proof of Theorem elfz2z
StepHypRef Expression
1 elfz2nn0 12997 . . 3 (𝐾 ∈ (0...𝑁) ↔ (𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐾𝑁))
2 df-3an 1085 . . 3 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐾𝑁) ↔ ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐾𝑁))
31, 2bitri 277 . 2 (𝐾 ∈ (0...𝑁) ↔ ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐾𝑁))
4 nn0ge0 11921 . . . . . 6 (𝐾 ∈ ℕ0 → 0 ≤ 𝐾)
54adantr 483 . . . . 5 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) → 0 ≤ 𝐾)
6 simpll 765 . . . . . . . . 9 (((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾𝑁) → 𝐾 ∈ ℤ)
76anim1i 616 . . . . . . . 8 ((((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾𝑁) ∧ 0 ≤ 𝐾) → (𝐾 ∈ ℤ ∧ 0 ≤ 𝐾))
8 elnn0z 11993 . . . . . . . 8 (𝐾 ∈ ℕ0 ↔ (𝐾 ∈ ℤ ∧ 0 ≤ 𝐾))
97, 8sylibr 236 . . . . . . 7 ((((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾𝑁) ∧ 0 ≤ 𝐾) → 𝐾 ∈ ℕ0)
10 0red 10643 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 0 ∈ ℝ)
11 zre 11984 . . . . . . . . . . . 12 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
1211adantr 483 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐾 ∈ ℝ)
13 zre 11984 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
1413adantl 484 . . . . . . . . . . 11 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℝ)
15 letr 10733 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((0 ≤ 𝐾𝐾𝑁) → 0 ≤ 𝑁))
1610, 12, 14, 15syl3anc 1367 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((0 ≤ 𝐾𝐾𝑁) → 0 ≤ 𝑁))
17 elnn0z 11993 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℤ ∧ 0 ≤ 𝑁))
1817simplbi2 503 . . . . . . . . . . 11 (𝑁 ∈ ℤ → (0 ≤ 𝑁𝑁 ∈ ℕ0))
1918adantl 484 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 ≤ 𝑁𝑁 ∈ ℕ0))
2016, 19syld 47 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((0 ≤ 𝐾𝐾𝑁) → 𝑁 ∈ ℕ0))
2120expcomd 419 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾𝑁 → (0 ≤ 𝐾𝑁 ∈ ℕ0)))
2221imp31 420 . . . . . . 7 ((((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾𝑁) ∧ 0 ≤ 𝐾) → 𝑁 ∈ ℕ0)
239, 22jca 514 . . . . . 6 ((((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾𝑁) ∧ 0 ≤ 𝐾) → (𝐾 ∈ ℕ0𝑁 ∈ ℕ0))
2423ex 415 . . . . 5 (((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾𝑁) → (0 ≤ 𝐾 → (𝐾 ∈ ℕ0𝑁 ∈ ℕ0)))
255, 24impbid2 228 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾𝑁) → ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ↔ 0 ≤ 𝐾))
2625ex 415 . . 3 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾𝑁 → ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ↔ 0 ≤ 𝐾)))
2726pm5.32rd 580 . 2 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((𝐾 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐾𝑁) ↔ (0 ≤ 𝐾𝐾𝑁)))
283, 27syl5bb 285 1 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (0...𝑁) ↔ (0 ≤ 𝐾𝐾𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083  wcel 2110   class class class wbr 5065  (class class class)co 7155  cr 10535  0cc0 10536  cle 10675  0cn0 11896  cz 11980  ...cfz 12891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-n0 11897  df-z 11981  df-uz 12243  df-fz 12892
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator