MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfzo2 Structured version   Visualization version   GIF version

Theorem elfzo2 12687
Description: Membership in a half-open integer interval. (Contributed by Mario Carneiro, 29-Sep-2015.)
Assertion
Ref Expression
elfzo2 (𝐾 ∈ (𝑀..^𝑁) ↔ (𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁))

Proof of Theorem elfzo2
StepHypRef Expression
1 an4 900 . . 3 ((((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑁 ∈ ℤ) ∧ (𝑀𝐾𝐾 < 𝑁)) ↔ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑀𝐾) ∧ (𝑁 ∈ ℤ ∧ 𝐾 < 𝑁)))
2 df-3an 1074 . . . 4 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ↔ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑁 ∈ ℤ))
32anbi1i 733 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀𝐾𝐾 < 𝑁)) ↔ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑁 ∈ ℤ) ∧ (𝑀𝐾𝐾 < 𝑁)))
4 eluz2 11905 . . . . 5 (𝐾 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀𝐾))
5 3ancoma 1084 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑀𝐾) ↔ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑀𝐾))
6 df-3an 1074 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑀𝐾) ↔ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑀𝐾))
74, 5, 63bitri 286 . . . 4 (𝐾 ∈ (ℤ𝑀) ↔ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑀𝐾))
87anbi1i 733 . . 3 ((𝐾 ∈ (ℤ𝑀) ∧ (𝑁 ∈ ℤ ∧ 𝐾 < 𝑁)) ↔ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝑀𝐾) ∧ (𝑁 ∈ ℤ ∧ 𝐾 < 𝑁)))
91, 3, 83bitr4i 292 . 2 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀𝐾𝐾 < 𝑁)) ↔ (𝐾 ∈ (ℤ𝑀) ∧ (𝑁 ∈ ℤ ∧ 𝐾 < 𝑁)))
10 elfzoelz 12684 . . . 4 (𝐾 ∈ (𝑀..^𝑁) → 𝐾 ∈ ℤ)
11 elfzoel1 12682 . . . 4 (𝐾 ∈ (𝑀..^𝑁) → 𝑀 ∈ ℤ)
12 elfzoel2 12683 . . . 4 (𝐾 ∈ (𝑀..^𝑁) → 𝑁 ∈ ℤ)
1310, 11, 123jca 1123 . . 3 (𝐾 ∈ (𝑀..^𝑁) → (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
14 elfzo 12686 . . 3 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ (𝑀..^𝑁) ↔ (𝑀𝐾𝐾 < 𝑁)))
1513, 14biadan2 677 . 2 (𝐾 ∈ (𝑀..^𝑁) ↔ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀𝐾𝐾 < 𝑁)))
16 3anass 1081 . 2 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁) ↔ (𝐾 ∈ (ℤ𝑀) ∧ (𝑁 ∈ ℤ ∧ 𝐾 < 𝑁)))
179, 15, 163bitr4i 292 1 (𝐾 ∈ (𝑀..^𝑁) ↔ (𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 383  w3a 1072  wcel 2139   class class class wbr 4804  cfv 6049  (class class class)co 6814   < clt 10286  cle 10287  cz 11589  cuz 11899  ..^cfzo 12679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-nn 11233  df-n0 11505  df-z 11590  df-uz 11900  df-fz 12540  df-fzo 12680
This theorem is referenced by:  elfzouz  12688  fzolb  12690  elfzo3  12700  fzouzsplit  12717  prinfzo0  12721  elfzo0  12723  elfzo1  12732  fzo1fzo0n0  12733  eluzgtdifelfzo  12744  ssfzo12bi  12777  elfzonelfzo  12784  elfzomelpfzo  12786  modaddmodup  12947  ccatrn  13581  cshwidxmod  13769  cats1fv  13824  bitsfzolem  15378  bitsfzo  15379  bitsmod  15380  bitsfi  15381  bitsinv1lem  15385  bitsinv1  15386  modprm0  15732  prmgaplem5  15981  prmgaplem6  15982  prmgaplem7  15983  lt6abl  18516  iundisj2  23537  dchrisum0flblem2  25418  crctcshwlkn0lem5  26938  iundisj2f  29731  iundisj2fi  29886  ssinc  39781  ssdec  39782  elfzfzo  40005  monoords  40028  elfzod  40140  iblspltprt  40710  itgspltprt  40716  fourierdlem20  40865  fourierdlem25  40870  fourierdlem41  40886  fourierdlem48  40892  fourierdlem49  40893  fourierdlem50  40894  fourierdlem79  40923  iundjiunlem  41197  subsubelfzo0  41864  fzoopth  41865  iccpartiltu  41886  iccpartigtl  41887  iccpartgt  41891  wtgoldbnnsum4prm  42218  bgoldbnnsum3prm  42220  bgoldbtbndlem3  42223  bgoldbtbndlem4  42224  elfzolborelfzop1  42837  m1modmmod  42844  fllog2  42890  nnolog2flm1  42912
  Copyright terms: Public domain W3C validator