MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfzodifsumelfzo Structured version   Visualization version   GIF version

Theorem elfzodifsumelfzo 12573
Description: If an integer is in a half-open range of nonnegative integers with a difference as upper bound, the sum of the integer with the subtrahend of the difference is in the a half-open range of nonnegative integers containing the minuend of the difference. (Contributed by AV, 13-Nov-2018.)
Assertion
Ref Expression
elfzodifsumelfzo ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...𝑃)) → (𝐼 ∈ (0..^(𝑁𝑀)) → (𝐼 + 𝑀) ∈ (0..^𝑃)))

Proof of Theorem elfzodifsumelfzo
StepHypRef Expression
1 elfz2nn0 12469 . . 3 (𝑀 ∈ (0...𝑁) ↔ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))
2 elfz2nn0 12469 . . . . 5 (𝑁 ∈ (0...𝑃) ↔ (𝑁 ∈ ℕ0𝑃 ∈ ℕ0𝑁𝑃))
3 elfzo0 12548 . . . . . . . 8 (𝐼 ∈ (0..^(𝑁𝑀)) ↔ (𝐼 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ ∧ 𝐼 < (𝑁𝑀)))
4 nn0z 11438 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ0𝑀 ∈ ℤ)
5 nn0z 11438 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
6 znnsub 11461 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑁𝑀) ∈ ℕ))
74, 5, 6syl2an 493 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 < 𝑁 ↔ (𝑁𝑀) ∈ ℕ))
8 simpr 476 . . . . . . . . . . . . . . . 16 ((𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0) → 𝐼 ∈ ℕ0)
9 simpll 805 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) → 𝑀 ∈ ℕ0)
10 nn0addcl 11366 . . . . . . . . . . . . . . . 16 ((𝐼 ∈ ℕ0𝑀 ∈ ℕ0) → (𝐼 + 𝑀) ∈ ℕ0)
118, 9, 10syl2anr 494 . . . . . . . . . . . . . . 15 ((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) ∧ (𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0)) → (𝐼 + 𝑀) ∈ ℕ0)
1211adantr 480 . . . . . . . . . . . . . 14 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) ∧ (𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0)) ∧ (𝑃 ∈ ℕ0𝑁𝑃)) → (𝐼 + 𝑀) ∈ ℕ0)
13 0red 10079 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 0 ∈ ℝ)
14 nn0re 11339 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
1514adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑀 ∈ ℝ)
16 nn0re 11339 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
1716adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℝ)
1813, 15, 173jca 1261 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (0 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ))
1918adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) → (0 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ))
20 nn0ge0 11356 . . . . . . . . . . . . . . . . . . . . . 22 (𝑀 ∈ ℕ0 → 0 ≤ 𝑀)
2120adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 0 ≤ 𝑀)
2221anim1i 591 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) → (0 ≤ 𝑀𝑀 < 𝑁))
23 lelttr 10166 . . . . . . . . . . . . . . . . . . . 20 ((0 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((0 ≤ 𝑀𝑀 < 𝑁) → 0 < 𝑁))
2419, 22, 23sylc 65 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) → 0 < 𝑁)
2524ex 449 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 < 𝑁 → 0 < 𝑁))
26 0red 10079 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑃 ∈ ℕ0𝑁 ∈ ℕ0) → 0 ∈ ℝ)
2716adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑃 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℝ)
28 nn0re 11339 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑃 ∈ ℕ0𝑃 ∈ ℝ)
2928adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑃 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑃 ∈ ℝ)
30 ltletr 10167 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((0 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑃 ∈ ℝ) → ((0 < 𝑁𝑁𝑃) → 0 < 𝑃))
3126, 27, 29, 30syl3anc 1366 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑃 ∈ ℕ0𝑁 ∈ ℕ0) → ((0 < 𝑁𝑁𝑃) → 0 < 𝑃))
32 nn0z 11438 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑃 ∈ ℕ0𝑃 ∈ ℤ)
33 elnnz 11425 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑃 ∈ ℕ ↔ (𝑃 ∈ ℤ ∧ 0 < 𝑃))
3433simplbi2 654 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑃 ∈ ℤ → (0 < 𝑃𝑃 ∈ ℕ))
3532, 34syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑃 ∈ ℕ0 → (0 < 𝑃𝑃 ∈ ℕ))
3635adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑃 ∈ ℕ0𝑁 ∈ ℕ0) → (0 < 𝑃𝑃 ∈ ℕ))
3731, 36syld 47 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃 ∈ ℕ0𝑁 ∈ ℕ0) → ((0 < 𝑁𝑁𝑃) → 𝑃 ∈ ℕ))
3837exp4b 631 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃 ∈ ℕ0 → (𝑁 ∈ ℕ0 → (0 < 𝑁 → (𝑁𝑃𝑃 ∈ ℕ))))
3938com24 95 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ ℕ0 → (𝑁𝑃 → (0 < 𝑁 → (𝑁 ∈ ℕ0𝑃 ∈ ℕ))))
4039imp 444 . . . . . . . . . . . . . . . . . . . 20 ((𝑃 ∈ ℕ0𝑁𝑃) → (0 < 𝑁 → (𝑁 ∈ ℕ0𝑃 ∈ ℕ)))
4140com13 88 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0 → (0 < 𝑁 → ((𝑃 ∈ ℕ0𝑁𝑃) → 𝑃 ∈ ℕ)))
4241adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (0 < 𝑁 → ((𝑃 ∈ ℕ0𝑁𝑃) → 𝑃 ∈ ℕ)))
4325, 42syld 47 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 < 𝑁 → ((𝑃 ∈ ℕ0𝑁𝑃) → 𝑃 ∈ ℕ)))
4443imp 444 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) → ((𝑃 ∈ ℕ0𝑁𝑃) → 𝑃 ∈ ℕ))
4544adantr 480 . . . . . . . . . . . . . . 15 ((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) ∧ (𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0)) → ((𝑃 ∈ ℕ0𝑁𝑃) → 𝑃 ∈ ℕ))
4645imp 444 . . . . . . . . . . . . . 14 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) ∧ (𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0)) ∧ (𝑃 ∈ ℕ0𝑁𝑃)) → 𝑃 ∈ ℕ)
47 nn0re 11339 . . . . . . . . . . . . . . . . . . . . 21 (𝐼 ∈ ℕ0𝐼 ∈ ℝ)
4847adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0) → 𝐼 ∈ ℝ)
4915adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) → 𝑀 ∈ ℝ)
50 readdcl 10057 . . . . . . . . . . . . . . . . . . . 20 ((𝐼 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝐼 + 𝑀) ∈ ℝ)
5148, 49, 50syl2anr 494 . . . . . . . . . . . . . . . . . . 19 ((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) ∧ (𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0)) → (𝐼 + 𝑀) ∈ ℝ)
5251adantr 480 . . . . . . . . . . . . . . . . . 18 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) ∧ (𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0)) ∧ 𝑃 ∈ ℕ0) → (𝐼 + 𝑀) ∈ ℝ)
5317adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) → 𝑁 ∈ ℝ)
5453adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) ∧ (𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0)) → 𝑁 ∈ ℝ)
5554adantr 480 . . . . . . . . . . . . . . . . . 18 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) ∧ (𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0)) ∧ 𝑃 ∈ ℕ0) → 𝑁 ∈ ℝ)
5628adantl 481 . . . . . . . . . . . . . . . . . 18 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) ∧ (𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0)) ∧ 𝑃 ∈ ℕ0) → 𝑃 ∈ ℝ)
5752, 55, 563jca 1261 . . . . . . . . . . . . . . . . 17 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) ∧ (𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0)) ∧ 𝑃 ∈ ℕ0) → ((𝐼 + 𝑀) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑃 ∈ ℝ))
5857adantr 480 . . . . . . . . . . . . . . . 16 ((((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) ∧ (𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0)) ∧ 𝑃 ∈ ℕ0) ∧ 𝑁𝑃) → ((𝐼 + 𝑀) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑃 ∈ ℝ))
5947adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐼 ∈ ℕ0) → 𝐼 ∈ ℝ)
6015adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐼 ∈ ℕ0) → 𝑀 ∈ ℝ)
6117adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐼 ∈ ℕ0) → 𝑁 ∈ ℝ)
6259, 60, 61ltaddsubd 10665 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝐼 ∈ ℕ0) → ((𝐼 + 𝑀) < 𝑁𝐼 < (𝑁𝑀)))
6362exbiri 651 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐼 ∈ ℕ0 → (𝐼 < (𝑁𝑀) → (𝐼 + 𝑀) < 𝑁)))
6463com23 86 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐼 < (𝑁𝑀) → (𝐼 ∈ ℕ0 → (𝐼 + 𝑀) < 𝑁)))
6564impd 446 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0) → (𝐼 + 𝑀) < 𝑁))
6665adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) → ((𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0) → (𝐼 + 𝑀) < 𝑁))
6766imp 444 . . . . . . . . . . . . . . . . . 18 ((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) ∧ (𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0)) → (𝐼 + 𝑀) < 𝑁)
6867adantr 480 . . . . . . . . . . . . . . . . 17 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) ∧ (𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0)) ∧ 𝑃 ∈ ℕ0) → (𝐼 + 𝑀) < 𝑁)
6968anim1i 591 . . . . . . . . . . . . . . . 16 ((((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) ∧ (𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0)) ∧ 𝑃 ∈ ℕ0) ∧ 𝑁𝑃) → ((𝐼 + 𝑀) < 𝑁𝑁𝑃))
70 ltletr 10167 . . . . . . . . . . . . . . . 16 (((𝐼 + 𝑀) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑃 ∈ ℝ) → (((𝐼 + 𝑀) < 𝑁𝑁𝑃) → (𝐼 + 𝑀) < 𝑃))
7158, 69, 70sylc 65 . . . . . . . . . . . . . . 15 ((((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) ∧ (𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0)) ∧ 𝑃 ∈ ℕ0) ∧ 𝑁𝑃) → (𝐼 + 𝑀) < 𝑃)
7271anasss 680 . . . . . . . . . . . . . 14 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) ∧ (𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0)) ∧ (𝑃 ∈ ℕ0𝑁𝑃)) → (𝐼 + 𝑀) < 𝑃)
73 elfzo0 12548 . . . . . . . . . . . . . 14 ((𝐼 + 𝑀) ∈ (0..^𝑃) ↔ ((𝐼 + 𝑀) ∈ ℕ0𝑃 ∈ ℕ ∧ (𝐼 + 𝑀) < 𝑃))
7412, 46, 72, 73syl3anbrc 1265 . . . . . . . . . . . . 13 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑀 < 𝑁) ∧ (𝐼 < (𝑁𝑀) ∧ 𝐼 ∈ ℕ0)) ∧ (𝑃 ∈ ℕ0𝑁𝑃)) → (𝐼 + 𝑀) ∈ (0..^𝑃))
7574exp53 646 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 < 𝑁 → (𝐼 < (𝑁𝑀) → (𝐼 ∈ ℕ0 → ((𝑃 ∈ ℕ0𝑁𝑃) → (𝐼 + 𝑀) ∈ (0..^𝑃))))))
767, 75sylbird 250 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑁𝑀) ∈ ℕ → (𝐼 < (𝑁𝑀) → (𝐼 ∈ ℕ0 → ((𝑃 ∈ ℕ0𝑁𝑃) → (𝐼 + 𝑀) ∈ (0..^𝑃))))))
77763adant3 1101 . . . . . . . . . 10 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → ((𝑁𝑀) ∈ ℕ → (𝐼 < (𝑁𝑀) → (𝐼 ∈ ℕ0 → ((𝑃 ∈ ℕ0𝑁𝑃) → (𝐼 + 𝑀) ∈ (0..^𝑃))))))
7877com14 96 . . . . . . . . 9 (𝐼 ∈ ℕ0 → ((𝑁𝑀) ∈ ℕ → (𝐼 < (𝑁𝑀) → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → ((𝑃 ∈ ℕ0𝑁𝑃) → (𝐼 + 𝑀) ∈ (0..^𝑃))))))
79783imp 1275 . . . . . . . 8 ((𝐼 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ ∧ 𝐼 < (𝑁𝑀)) → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → ((𝑃 ∈ ℕ0𝑁𝑃) → (𝐼 + 𝑀) ∈ (0..^𝑃))))
803, 79sylbi 207 . . . . . . 7 (𝐼 ∈ (0..^(𝑁𝑀)) → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → ((𝑃 ∈ ℕ0𝑁𝑃) → (𝐼 + 𝑀) ∈ (0..^𝑃))))
8180com13 88 . . . . . 6 ((𝑃 ∈ ℕ0𝑁𝑃) → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → (𝐼 ∈ (0..^(𝑁𝑀)) → (𝐼 + 𝑀) ∈ (0..^𝑃))))
82813adant1 1099 . . . . 5 ((𝑁 ∈ ℕ0𝑃 ∈ ℕ0𝑁𝑃) → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → (𝐼 ∈ (0..^(𝑁𝑀)) → (𝐼 + 𝑀) ∈ (0..^𝑃))))
832, 82sylbi 207 . . . 4 (𝑁 ∈ (0...𝑃) → ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → (𝐼 ∈ (0..^(𝑁𝑀)) → (𝐼 + 𝑀) ∈ (0..^𝑃))))
8483com12 32 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → (𝑁 ∈ (0...𝑃) → (𝐼 ∈ (0..^(𝑁𝑀)) → (𝐼 + 𝑀) ∈ (0..^𝑃))))
851, 84sylbi 207 . 2 (𝑀 ∈ (0...𝑁) → (𝑁 ∈ (0...𝑃) → (𝐼 ∈ (0..^(𝑁𝑀)) → (𝐼 + 𝑀) ∈ (0..^𝑃))))
8685imp 444 1 ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...𝑃)) → (𝐼 ∈ (0..^(𝑁𝑀)) → (𝐼 + 𝑀) ∈ (0..^𝑃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054  wcel 2030   class class class wbr 4685  (class class class)co 6690  cr 9973  0cc0 9974   + caddc 9977   < clt 10112  cle 10113  cmin 10304  cn 11058  0cn0 11330  cz 11415  ...cfz 12364  ..^cfzo 12504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-fzo 12505
This theorem is referenced by:  elfzom1elp1fzo  12574  swrdco  13629
  Copyright terms: Public domain W3C validator