![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elfzoel1 | Structured version Visualization version GIF version |
Description: Reverse closure for half-open integer sets. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
Ref | Expression |
---|---|
elfzoel1 | ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐵 ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ne0i 4064 | . . 3 ⊢ (𝐴 ∈ (𝐵..^𝐶) → (𝐵..^𝐶) ≠ ∅) | |
2 | fzof 12681 | . . . . . 6 ⊢ ..^:(ℤ × ℤ)⟶𝒫 ℤ | |
3 | 2 | fdmi 6213 | . . . . 5 ⊢ dom ..^ = (ℤ × ℤ) |
4 | 3 | ndmov 6984 | . . . 4 ⊢ (¬ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵..^𝐶) = ∅) |
5 | 4 | necon1ai 2959 | . . 3 ⊢ ((𝐵..^𝐶) ≠ ∅ → (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) |
6 | 1, 5 | syl 17 | . 2 ⊢ (𝐴 ∈ (𝐵..^𝐶) → (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ)) |
7 | 6 | simpld 477 | 1 ⊢ (𝐴 ∈ (𝐵..^𝐶) → 𝐵 ∈ ℤ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∈ wcel 2139 ≠ wne 2932 ∅c0 4058 𝒫 cpw 4302 × cxp 5264 (class class class)co 6814 ℤcz 11589 ..^cfzo 12679 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-cnex 10204 ax-resscn 10205 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-fv 6057 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-1st 7334 df-2nd 7335 df-neg 10481 df-z 11590 df-uz 11900 df-fz 12540 df-fzo 12680 |
This theorem is referenced by: elfzoelz 12684 elfzo2 12687 elfzole1 12692 elfzolt2 12693 elfzolt3 12694 elfzolt3b 12696 fzospliti 12714 fzoaddel 12735 elincfzoext 12740 fzosubel 12741 fzosubel3 12743 fzofzp1 12779 fzostep1 12798 fzomaxdiflem 14301 fzocongeq 15268 caratheodorylem1 41264 |
Copyright terms: Public domain | W3C validator |