MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elgch Structured version   Visualization version   GIF version

Theorem elgch 10046
Description: Elementhood in the collection of GCH-sets. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
elgch (𝐴𝑉 → (𝐴 ∈ GCH ↔ (𝐴 ∈ Fin ∨ ∀𝑥 ¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴))))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem elgch
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-gch 10045 . . . 4 GCH = (Fin ∪ {𝑦 ∣ ∀𝑥 ¬ (𝑦𝑥𝑥 ≺ 𝒫 𝑦)})
21eleq2i 2906 . . 3 (𝐴 ∈ GCH ↔ 𝐴 ∈ (Fin ∪ {𝑦 ∣ ∀𝑥 ¬ (𝑦𝑥𝑥 ≺ 𝒫 𝑦)}))
3 elun 4127 . . 3 (𝐴 ∈ (Fin ∪ {𝑦 ∣ ∀𝑥 ¬ (𝑦𝑥𝑥 ≺ 𝒫 𝑦)}) ↔ (𝐴 ∈ Fin ∨ 𝐴 ∈ {𝑦 ∣ ∀𝑥 ¬ (𝑦𝑥𝑥 ≺ 𝒫 𝑦)}))
42, 3bitri 277 . 2 (𝐴 ∈ GCH ↔ (𝐴 ∈ Fin ∨ 𝐴 ∈ {𝑦 ∣ ∀𝑥 ¬ (𝑦𝑥𝑥 ≺ 𝒫 𝑦)}))
5 breq1 5071 . . . . . . 7 (𝑦 = 𝐴 → (𝑦𝑥𝐴𝑥))
6 pweq 4557 . . . . . . . 8 (𝑦 = 𝐴 → 𝒫 𝑦 = 𝒫 𝐴)
76breq2d 5080 . . . . . . 7 (𝑦 = 𝐴 → (𝑥 ≺ 𝒫 𝑦𝑥 ≺ 𝒫 𝐴))
85, 7anbi12d 632 . . . . . 6 (𝑦 = 𝐴 → ((𝑦𝑥𝑥 ≺ 𝒫 𝑦) ↔ (𝐴𝑥𝑥 ≺ 𝒫 𝐴)))
98notbid 320 . . . . 5 (𝑦 = 𝐴 → (¬ (𝑦𝑥𝑥 ≺ 𝒫 𝑦) ↔ ¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴)))
109albidv 1921 . . . 4 (𝑦 = 𝐴 → (∀𝑥 ¬ (𝑦𝑥𝑥 ≺ 𝒫 𝑦) ↔ ∀𝑥 ¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴)))
1110elabg 3668 . . 3 (𝐴𝑉 → (𝐴 ∈ {𝑦 ∣ ∀𝑥 ¬ (𝑦𝑥𝑥 ≺ 𝒫 𝑦)} ↔ ∀𝑥 ¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴)))
1211orbi2d 912 . 2 (𝐴𝑉 → ((𝐴 ∈ Fin ∨ 𝐴 ∈ {𝑦 ∣ ∀𝑥 ¬ (𝑦𝑥𝑥 ≺ 𝒫 𝑦)}) ↔ (𝐴 ∈ Fin ∨ ∀𝑥 ¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴))))
134, 12syl5bb 285 1 (𝐴𝑉 → (𝐴 ∈ GCH ↔ (𝐴 ∈ Fin ∨ ∀𝑥 ¬ (𝐴𝑥𝑥 ≺ 𝒫 𝐴))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  wal 1535   = wceq 1537  wcel 2114  {cab 2801  cun 3936  𝒫 cpw 4541   class class class wbr 5068  csdm 8510  Fincfn 8511  GCHcgch 10044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-rab 3149  df-v 3498  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-br 5069  df-gch 10045
This theorem is referenced by:  gchi  10048  engch  10052  hargch  10097  alephgch  10098
  Copyright terms: Public domain W3C validator