Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elghomOLD Structured version   Visualization version   GIF version

Theorem elghomOLD 35167
Description: Obsolete version of isghm 18360 as of 15-Mar-2020. Membership in the set of group homomorphisms from 𝐺 to 𝐻. (Contributed by Paul Chapman, 3-Mar-2008.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
elghomOLD.1 𝑋 = ran 𝐺
elghomOLD.2 𝑊 = ran 𝐻
Assertion
Ref Expression
elghomOLD ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp) → (𝐹 ∈ (𝐺 GrpOpHom 𝐻) ↔ (𝐹:𝑋𝑊 ∧ ∀𝑥𝑋𝑦𝑋 ((𝐹𝑥)𝐻(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦)))))
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑥,𝐻,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝑊(𝑥,𝑦)

Proof of Theorem elghomOLD
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 eqid 2823 . . 3 {𝑓 ∣ (𝑓:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑓𝑥)𝐻(𝑓𝑦)) = (𝑓‘(𝑥𝐺𝑦)))} = {𝑓 ∣ (𝑓:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑓𝑥)𝐻(𝑓𝑦)) = (𝑓‘(𝑥𝐺𝑦)))}
21elghomlem2OLD 35166 . 2 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp) → (𝐹 ∈ (𝐺 GrpOpHom 𝐻) ↔ (𝐹:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝐹𝑥)𝐻(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦)))))
3 elghomOLD.1 . . . 4 𝑋 = ran 𝐺
4 elghomOLD.2 . . . 4 𝑊 = ran 𝐻
53, 4feq23i 6510 . . 3 (𝐹:𝑋𝑊𝐹:ran 𝐺⟶ran 𝐻)
63raleqi 3415 . . . 4 (∀𝑦𝑋 ((𝐹𝑥)𝐻(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦)) ↔ ∀𝑦 ∈ ran 𝐺((𝐹𝑥)𝐻(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦)))
73, 6raleqbii 3236 . . 3 (∀𝑥𝑋𝑦𝑋 ((𝐹𝑥)𝐻(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦)) ↔ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝐹𝑥)𝐻(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦)))
85, 7anbi12i 628 . 2 ((𝐹:𝑋𝑊 ∧ ∀𝑥𝑋𝑦𝑋 ((𝐹𝑥)𝐻(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦))) ↔ (𝐹:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝐹𝑥)𝐻(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦))))
92, 8syl6bbr 291 1 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp) → (𝐹 ∈ (𝐺 GrpOpHom 𝐻) ↔ (𝐹:𝑋𝑊 ∧ ∀𝑥𝑋𝑦𝑋 ((𝐹𝑥)𝐻(𝐹𝑦)) = (𝐹‘(𝑥𝐺𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  {cab 2801  wral 3140  ran crn 5558  wf 6353  cfv 6357  (class class class)co 7158  GrpOpcgr 28268   GrpOpHom cghomOLD 35163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-ghomOLD 35164
This theorem is referenced by:  ghomlinOLD  35168  ghomidOLD  35169  ghomf  35170  ghomco  35171  rngogrphom  35251
  Copyright terms: Public domain W3C validator