Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elghomlem1OLD Structured version   Visualization version   GIF version

Theorem elghomlem1OLD 33343
Description: Obsolete as of 15-Mar-2020. Lemma for elghomOLD 33345. (Contributed by Paul Chapman, 25-Feb-2008.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
elghomlem1OLD.1 𝑆 = {𝑓 ∣ (𝑓:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑓𝑥)𝐻(𝑓𝑦)) = (𝑓‘(𝑥𝐺𝑦)))}
Assertion
Ref Expression
elghomlem1OLD ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp) → (𝐺 GrpOpHom 𝐻) = 𝑆)
Distinct variable groups:   𝑥,𝑓,𝑦,𝐺   𝑓,𝐻,𝑥,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑓)

Proof of Theorem elghomlem1OLD
Dummy variables 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rnexg 7052 . . 3 (𝐺 ∈ GrpOp → ran 𝐺 ∈ V)
2 rnexg 7052 . . 3 (𝐻 ∈ GrpOp → ran 𝐻 ∈ V)
3 elghomlem1OLD.1 . . . 4 𝑆 = {𝑓 ∣ (𝑓:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑓𝑥)𝐻(𝑓𝑦)) = (𝑓‘(𝑥𝐺𝑦)))}
43fabexg 7076 . . 3 ((ran 𝐺 ∈ V ∧ ran 𝐻 ∈ V) → 𝑆 ∈ V)
51, 2, 4syl2an 494 . 2 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp) → 𝑆 ∈ V)
6 rneq 5316 . . . . . 6 (𝑔 = 𝐺 → ran 𝑔 = ran 𝐺)
76feq2d 5993 . . . . 5 (𝑔 = 𝐺 → (𝑓:ran 𝑔⟶ran 𝑓:ran 𝐺⟶ran ))
8 oveq 6616 . . . . . . . . 9 (𝑔 = 𝐺 → (𝑥𝑔𝑦) = (𝑥𝐺𝑦))
98fveq2d 6157 . . . . . . . 8 (𝑔 = 𝐺 → (𝑓‘(𝑥𝑔𝑦)) = (𝑓‘(𝑥𝐺𝑦)))
109eqeq2d 2631 . . . . . . 7 (𝑔 = 𝐺 → (((𝑓𝑥)(𝑓𝑦)) = (𝑓‘(𝑥𝑔𝑦)) ↔ ((𝑓𝑥)(𝑓𝑦)) = (𝑓‘(𝑥𝐺𝑦))))
116, 10raleqbidv 3144 . . . . . 6 (𝑔 = 𝐺 → (∀𝑦 ∈ ran 𝑔((𝑓𝑥)(𝑓𝑦)) = (𝑓‘(𝑥𝑔𝑦)) ↔ ∀𝑦 ∈ ran 𝐺((𝑓𝑥)(𝑓𝑦)) = (𝑓‘(𝑥𝐺𝑦))))
126, 11raleqbidv 3144 . . . . 5 (𝑔 = 𝐺 → (∀𝑥 ∈ ran 𝑔𝑦 ∈ ran 𝑔((𝑓𝑥)(𝑓𝑦)) = (𝑓‘(𝑥𝑔𝑦)) ↔ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑓𝑥)(𝑓𝑦)) = (𝑓‘(𝑥𝐺𝑦))))
137, 12anbi12d 746 . . . 4 (𝑔 = 𝐺 → ((𝑓:ran 𝑔⟶ran ∧ ∀𝑥 ∈ ran 𝑔𝑦 ∈ ran 𝑔((𝑓𝑥)(𝑓𝑦)) = (𝑓‘(𝑥𝑔𝑦))) ↔ (𝑓:ran 𝐺⟶ran ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑓𝑥)(𝑓𝑦)) = (𝑓‘(𝑥𝐺𝑦)))))
1413abbidv 2738 . . 3 (𝑔 = 𝐺 → {𝑓 ∣ (𝑓:ran 𝑔⟶ran ∧ ∀𝑥 ∈ ran 𝑔𝑦 ∈ ran 𝑔((𝑓𝑥)(𝑓𝑦)) = (𝑓‘(𝑥𝑔𝑦)))} = {𝑓 ∣ (𝑓:ran 𝐺⟶ran ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑓𝑥)(𝑓𝑦)) = (𝑓‘(𝑥𝐺𝑦)))})
15 rneq 5316 . . . . . . 7 ( = 𝐻 → ran = ran 𝐻)
1615feq3d 5994 . . . . . 6 ( = 𝐻 → (𝑓:ran 𝐺⟶ran 𝑓:ran 𝐺⟶ran 𝐻))
17 oveq 6616 . . . . . . . 8 ( = 𝐻 → ((𝑓𝑥)(𝑓𝑦)) = ((𝑓𝑥)𝐻(𝑓𝑦)))
1817eqeq1d 2623 . . . . . . 7 ( = 𝐻 → (((𝑓𝑥)(𝑓𝑦)) = (𝑓‘(𝑥𝐺𝑦)) ↔ ((𝑓𝑥)𝐻(𝑓𝑦)) = (𝑓‘(𝑥𝐺𝑦))))
19182ralbidv 2984 . . . . . 6 ( = 𝐻 → (∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑓𝑥)(𝑓𝑦)) = (𝑓‘(𝑥𝐺𝑦)) ↔ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑓𝑥)𝐻(𝑓𝑦)) = (𝑓‘(𝑥𝐺𝑦))))
2016, 19anbi12d 746 . . . . 5 ( = 𝐻 → ((𝑓:ran 𝐺⟶ran ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑓𝑥)(𝑓𝑦)) = (𝑓‘(𝑥𝐺𝑦))) ↔ (𝑓:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑓𝑥)𝐻(𝑓𝑦)) = (𝑓‘(𝑥𝐺𝑦)))))
2120abbidv 2738 . . . 4 ( = 𝐻 → {𝑓 ∣ (𝑓:ran 𝐺⟶ran ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑓𝑥)(𝑓𝑦)) = (𝑓‘(𝑥𝐺𝑦)))} = {𝑓 ∣ (𝑓:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑓𝑥)𝐻(𝑓𝑦)) = (𝑓‘(𝑥𝐺𝑦)))})
2221, 3syl6eqr 2673 . . 3 ( = 𝐻 → {𝑓 ∣ (𝑓:ran 𝐺⟶ran ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑓𝑥)(𝑓𝑦)) = (𝑓‘(𝑥𝐺𝑦)))} = 𝑆)
23 df-ghomOLD 33342 . . 3 GrpOpHom = (𝑔 ∈ GrpOp, ∈ GrpOp ↦ {𝑓 ∣ (𝑓:ran 𝑔⟶ran ∧ ∀𝑥 ∈ ran 𝑔𝑦 ∈ ran 𝑔((𝑓𝑥)(𝑓𝑦)) = (𝑓‘(𝑥𝑔𝑦)))})
2414, 22, 23ovmpt2g 6755 . 2 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝑆 ∈ V) → (𝐺 GrpOpHom 𝐻) = 𝑆)
255, 24mpd3an3 1422 1 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp) → (𝐺 GrpOpHom 𝐻) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  {cab 2607  wral 2907  Vcvv 3189  ran crn 5080  wf 5848  cfv 5852  (class class class)co 6610  GrpOpcgr 27210   GrpOpHom cghomOLD 33341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3191  df-sbc 3422  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-br 4619  df-opab 4679  df-id 4994  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-fv 5860  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-ghomOLD 33342
This theorem is referenced by:  elghomlem2OLD  33344
  Copyright terms: Public domain W3C validator