Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elghomlem1OLD Structured version   Visualization version   GIF version

Theorem elghomlem1OLD 35044
Description: Obsolete as of 15-Mar-2020. Lemma for elghomOLD 35046. (Contributed by Paul Chapman, 25-Feb-2008.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
elghomlem1OLD.1 𝑆 = {𝑓 ∣ (𝑓:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑓𝑥)𝐻(𝑓𝑦)) = (𝑓‘(𝑥𝐺𝑦)))}
Assertion
Ref Expression
elghomlem1OLD ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp) → (𝐺 GrpOpHom 𝐻) = 𝑆)
Distinct variable groups:   𝑥,𝑓,𝑦,𝐺   𝑓,𝐻,𝑥,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑓)

Proof of Theorem elghomlem1OLD
Dummy variables 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rnexg 7603 . . 3 (𝐺 ∈ GrpOp → ran 𝐺 ∈ V)
2 rnexg 7603 . . 3 (𝐻 ∈ GrpOp → ran 𝐻 ∈ V)
3 elghomlem1OLD.1 . . . 4 𝑆 = {𝑓 ∣ (𝑓:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑓𝑥)𝐻(𝑓𝑦)) = (𝑓‘(𝑥𝐺𝑦)))}
43fabexg 7628 . . 3 ((ran 𝐺 ∈ V ∧ ran 𝐻 ∈ V) → 𝑆 ∈ V)
51, 2, 4syl2an 595 . 2 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp) → 𝑆 ∈ V)
6 rneq 5799 . . . . . 6 (𝑔 = 𝐺 → ran 𝑔 = ran 𝐺)
76feq2d 6493 . . . . 5 (𝑔 = 𝐺 → (𝑓:ran 𝑔⟶ran 𝑓:ran 𝐺⟶ran ))
8 oveq 7151 . . . . . . . . 9 (𝑔 = 𝐺 → (𝑥𝑔𝑦) = (𝑥𝐺𝑦))
98fveq2d 6667 . . . . . . . 8 (𝑔 = 𝐺 → (𝑓‘(𝑥𝑔𝑦)) = (𝑓‘(𝑥𝐺𝑦)))
109eqeq2d 2829 . . . . . . 7 (𝑔 = 𝐺 → (((𝑓𝑥)(𝑓𝑦)) = (𝑓‘(𝑥𝑔𝑦)) ↔ ((𝑓𝑥)(𝑓𝑦)) = (𝑓‘(𝑥𝐺𝑦))))
116, 10raleqbidv 3399 . . . . . 6 (𝑔 = 𝐺 → (∀𝑦 ∈ ran 𝑔((𝑓𝑥)(𝑓𝑦)) = (𝑓‘(𝑥𝑔𝑦)) ↔ ∀𝑦 ∈ ran 𝐺((𝑓𝑥)(𝑓𝑦)) = (𝑓‘(𝑥𝐺𝑦))))
126, 11raleqbidv 3399 . . . . 5 (𝑔 = 𝐺 → (∀𝑥 ∈ ran 𝑔𝑦 ∈ ran 𝑔((𝑓𝑥)(𝑓𝑦)) = (𝑓‘(𝑥𝑔𝑦)) ↔ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑓𝑥)(𝑓𝑦)) = (𝑓‘(𝑥𝐺𝑦))))
137, 12anbi12d 630 . . . 4 (𝑔 = 𝐺 → ((𝑓:ran 𝑔⟶ran ∧ ∀𝑥 ∈ ran 𝑔𝑦 ∈ ran 𝑔((𝑓𝑥)(𝑓𝑦)) = (𝑓‘(𝑥𝑔𝑦))) ↔ (𝑓:ran 𝐺⟶ran ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑓𝑥)(𝑓𝑦)) = (𝑓‘(𝑥𝐺𝑦)))))
1413abbidv 2882 . . 3 (𝑔 = 𝐺 → {𝑓 ∣ (𝑓:ran 𝑔⟶ran ∧ ∀𝑥 ∈ ran 𝑔𝑦 ∈ ran 𝑔((𝑓𝑥)(𝑓𝑦)) = (𝑓‘(𝑥𝑔𝑦)))} = {𝑓 ∣ (𝑓:ran 𝐺⟶ran ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑓𝑥)(𝑓𝑦)) = (𝑓‘(𝑥𝐺𝑦)))})
15 rneq 5799 . . . . . . 7 ( = 𝐻 → ran = ran 𝐻)
1615feq3d 6494 . . . . . 6 ( = 𝐻 → (𝑓:ran 𝐺⟶ran 𝑓:ran 𝐺⟶ran 𝐻))
17 oveq 7151 . . . . . . . 8 ( = 𝐻 → ((𝑓𝑥)(𝑓𝑦)) = ((𝑓𝑥)𝐻(𝑓𝑦)))
1817eqeq1d 2820 . . . . . . 7 ( = 𝐻 → (((𝑓𝑥)(𝑓𝑦)) = (𝑓‘(𝑥𝐺𝑦)) ↔ ((𝑓𝑥)𝐻(𝑓𝑦)) = (𝑓‘(𝑥𝐺𝑦))))
19182ralbidv 3196 . . . . . 6 ( = 𝐻 → (∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑓𝑥)(𝑓𝑦)) = (𝑓‘(𝑥𝐺𝑦)) ↔ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑓𝑥)𝐻(𝑓𝑦)) = (𝑓‘(𝑥𝐺𝑦))))
2016, 19anbi12d 630 . . . . 5 ( = 𝐻 → ((𝑓:ran 𝐺⟶ran ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑓𝑥)(𝑓𝑦)) = (𝑓‘(𝑥𝐺𝑦))) ↔ (𝑓:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑓𝑥)𝐻(𝑓𝑦)) = (𝑓‘(𝑥𝐺𝑦)))))
2120abbidv 2882 . . . 4 ( = 𝐻 → {𝑓 ∣ (𝑓:ran 𝐺⟶ran ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑓𝑥)(𝑓𝑦)) = (𝑓‘(𝑥𝐺𝑦)))} = {𝑓 ∣ (𝑓:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑓𝑥)𝐻(𝑓𝑦)) = (𝑓‘(𝑥𝐺𝑦)))})
2221, 3syl6eqr 2871 . . 3 ( = 𝐻 → {𝑓 ∣ (𝑓:ran 𝐺⟶ran ∧ ∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑓𝑥)(𝑓𝑦)) = (𝑓‘(𝑥𝐺𝑦)))} = 𝑆)
23 df-ghomOLD 35043 . . 3 GrpOpHom = (𝑔 ∈ GrpOp, ∈ GrpOp ↦ {𝑓 ∣ (𝑓:ran 𝑔⟶ran ∧ ∀𝑥 ∈ ran 𝑔𝑦 ∈ ran 𝑔((𝑓𝑥)(𝑓𝑦)) = (𝑓‘(𝑥𝑔𝑦)))})
2414, 22, 23ovmpog 7298 . 2 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝑆 ∈ V) → (𝐺 GrpOpHom 𝐻) = 𝑆)
255, 24mpd3an3 1453 1 ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp) → (𝐺 GrpOpHom 𝐻) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wcel 2105  {cab 2796  wral 3135  Vcvv 3492  ran crn 5549  wf 6344  cfv 6348  (class class class)co 7145  GrpOpcgr 28193   GrpOpHom cghomOLD 35042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ral 3140  df-rex 3141  df-rab 3144  df-v 3494  df-sbc 3770  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-br 5058  df-opab 5120  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-fv 6356  df-ov 7148  df-oprab 7149  df-mpo 7150  df-ghomOLD 35043
This theorem is referenced by:  elghomlem2OLD  35045
  Copyright terms: Public domain W3C validator