Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elhf Structured version   Visualization version   GIF version

Theorem elhf 31976
Description: Membership in the hereditarily finite sets. (Contributed by Scott Fenton, 9-Jul-2015.)
Assertion
Ref Expression
elhf (𝐴 ∈ Hf ↔ ∃𝑥 ∈ ω 𝐴 ∈ (𝑅1𝑥))
Distinct variable group:   𝑥,𝐴

Proof of Theorem elhf
StepHypRef Expression
1 df-hf 31975 . . 3 Hf = (𝑅1 “ ω)
21eleq2i 2690 . 2 (𝐴 ∈ Hf ↔ 𝐴 (𝑅1 “ ω))
3 r111 8598 . . 3 𝑅1:On–1-1→V
4 f1fun 6070 . . 3 (𝑅1:On–1-1→V → Fun 𝑅1)
5 eluniima 6473 . . 3 (Fun 𝑅1 → (𝐴 (𝑅1 “ ω) ↔ ∃𝑥 ∈ ω 𝐴 ∈ (𝑅1𝑥)))
63, 4, 5mp2b 10 . 2 (𝐴 (𝑅1 “ ω) ↔ ∃𝑥 ∈ ω 𝐴 ∈ (𝑅1𝑥))
72, 6bitri 264 1 (𝐴 ∈ Hf ↔ ∃𝑥 ∈ ω 𝐴 ∈ (𝑅1𝑥))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wcel 1987  wrex 2909  Vcvv 3190   cuni 4409  cima 5087  Oncon0 5692  Fun wfun 5851  1-1wf1 5854  cfv 5857  ωcom 7027  𝑅1cr1 8585   Hf chf 31974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2913  df-rex 2914  df-reu 2915  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-er 7702  df-en 7916  df-dom 7917  df-sdom 7918  df-r1 8587  df-hf 31975
This theorem is referenced by:  elhf2  31977  0hf  31979
  Copyright terms: Public domain W3C validator