MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elhomai Structured version   Visualization version   GIF version

Theorem elhomai 16448
Description: Produce an arrow from a morphism. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
homarcl.h 𝐻 = (Homa𝐶)
homafval.b 𝐵 = (Base‘𝐶)
homafval.c (𝜑𝐶 ∈ Cat)
homaval.j 𝐽 = (Hom ‘𝐶)
homaval.x (𝜑𝑋𝐵)
homaval.y (𝜑𝑌𝐵)
elhomai.f (𝜑𝐹 ∈ (𝑋𝐽𝑌))
Assertion
Ref Expression
elhomai (𝜑 → ⟨𝑋, 𝑌⟩(𝑋𝐻𝑌)𝐹)

Proof of Theorem elhomai
StepHypRef Expression
1 eqidd 2606 . 2 (𝜑 → ⟨𝑋, 𝑌⟩ = ⟨𝑋, 𝑌⟩)
2 elhomai.f . 2 (𝜑𝐹 ∈ (𝑋𝐽𝑌))
3 homarcl.h . . 3 𝐻 = (Homa𝐶)
4 homafval.b . . 3 𝐵 = (Base‘𝐶)
5 homafval.c . . 3 (𝜑𝐶 ∈ Cat)
6 homaval.j . . 3 𝐽 = (Hom ‘𝐶)
7 homaval.x . . 3 (𝜑𝑋𝐵)
8 homaval.y . . 3 (𝜑𝑌𝐵)
93, 4, 5, 6, 7, 8elhoma 16447 . 2 (𝜑 → (⟨𝑋, 𝑌⟩(𝑋𝐻𝑌)𝐹 ↔ (⟨𝑋, 𝑌⟩ = ⟨𝑋, 𝑌⟩ ∧ 𝐹 ∈ (𝑋𝐽𝑌))))
101, 2, 9mpbir2and 958 1 (𝜑 → ⟨𝑋, 𝑌⟩(𝑋𝐻𝑌)𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1474  wcel 1975  cop 4126   class class class wbr 4573  cfv 5786  (class class class)co 6523  Basecbs 15637  Hom chom 15721  Catccat 16090  Homachoma 16438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585  ax-rep 4689  ax-sep 4699  ax-nul 4708  ax-pow 4760  ax-pr 4824  ax-un 6820
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2457  df-mo 2458  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-ne 2777  df-ral 2896  df-rex 2897  df-reu 2898  df-rab 2900  df-v 3170  df-sbc 3398  df-csb 3495  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-nul 3870  df-if 4032  df-pw 4105  df-sn 4121  df-pr 4123  df-op 4127  df-uni 4363  df-iun 4447  df-br 4574  df-opab 4634  df-mpt 4635  df-id 4939  df-xp 5030  df-rel 5031  df-cnv 5032  df-co 5033  df-dm 5034  df-rn 5035  df-res 5036  df-ima 5037  df-iota 5750  df-fun 5788  df-fn 5789  df-f 5790  df-f1 5791  df-fo 5792  df-f1o 5793  df-fv 5794  df-ov 6526  df-homa 16441
This theorem is referenced by:  elhomai2  16449
  Copyright terms: Public domain W3C validator