Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eliccnelico Structured version   Visualization version   GIF version

Theorem eliccnelico 41681
Description: An element of a closed interval that is not a member of the left-closed right-open interval, must be the upper bound. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
eliccnelico.1 (𝜑𝐴 ∈ ℝ*)
eliccnelico.b (𝜑𝐵 ∈ ℝ*)
eliccnelico.c (𝜑𝐶 ∈ (𝐴[,]𝐵))
eliccnelico.nel (𝜑 → ¬ 𝐶 ∈ (𝐴[,)𝐵))
Assertion
Ref Expression
eliccnelico (𝜑𝐶 = 𝐵)

Proof of Theorem eliccnelico
StepHypRef Expression
1 eliccnelico.c . . 3 (𝜑𝐶 ∈ (𝐴[,]𝐵))
2 eliccxr 12811 . . 3 (𝐶 ∈ (𝐴[,]𝐵) → 𝐶 ∈ ℝ*)
31, 2syl 17 . 2 (𝜑𝐶 ∈ ℝ*)
4 eliccnelico.b . 2 (𝜑𝐵 ∈ ℝ*)
5 eliccnelico.1 . . 3 (𝜑𝐴 ∈ ℝ*)
6 iccleub 12780 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ (𝐴[,]𝐵)) → 𝐶𝐵)
75, 4, 1, 6syl3anc 1363 . 2 (𝜑𝐶𝐵)
85adantr 481 . . . 4 ((𝜑 ∧ ¬ 𝐵𝐶) → 𝐴 ∈ ℝ*)
94adantr 481 . . . 4 ((𝜑 ∧ ¬ 𝐵𝐶) → 𝐵 ∈ ℝ*)
103adantr 481 . . . 4 ((𝜑 ∧ ¬ 𝐵𝐶) → 𝐶 ∈ ℝ*)
11 iccgelb 12781 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ (𝐴[,]𝐵)) → 𝐴𝐶)
125, 4, 1, 11syl3anc 1363 . . . . 5 (𝜑𝐴𝐶)
1312adantr 481 . . . 4 ((𝜑 ∧ ¬ 𝐵𝐶) → 𝐴𝐶)
14 simpr 485 . . . . 5 ((𝜑 ∧ ¬ 𝐵𝐶) → ¬ 𝐵𝐶)
15 xrltnle 10696 . . . . . . 7 ((𝐶 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 < 𝐵 ↔ ¬ 𝐵𝐶))
163, 4, 15syl2anc 584 . . . . . 6 (𝜑 → (𝐶 < 𝐵 ↔ ¬ 𝐵𝐶))
1716adantr 481 . . . . 5 ((𝜑 ∧ ¬ 𝐵𝐶) → (𝐶 < 𝐵 ↔ ¬ 𝐵𝐶))
1814, 17mpbird 258 . . . 4 ((𝜑 ∧ ¬ 𝐵𝐶) → 𝐶 < 𝐵)
198, 9, 10, 13, 18elicod 12775 . . 3 ((𝜑 ∧ ¬ 𝐵𝐶) → 𝐶 ∈ (𝐴[,)𝐵))
20 eliccnelico.nel . . . 4 (𝜑 → ¬ 𝐶 ∈ (𝐴[,)𝐵))
2120adantr 481 . . 3 ((𝜑 ∧ ¬ 𝐵𝐶) → ¬ 𝐶 ∈ (𝐴[,)𝐵))
2219, 21condan 814 . 2 (𝜑𝐵𝐶)
233, 4, 7, 22xrletrid 12536 1 (𝜑𝐶 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105   class class class wbr 5057  (class class class)co 7145  *cxr 10662   < clt 10663  cle 10664  [,)cico 12728  [,]cicc 12729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-pre-lttri 10599  ax-pre-lttrn 10600
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-po 5467  df-so 5468  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7148  df-oprab 7149  df-mpo 7150  df-1st 7678  df-2nd 7679  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-ico 12732  df-icc 12733
This theorem is referenced by:  sge0f1o  42541
  Copyright terms: Public domain W3C validator