MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elicopnf Structured version   Visualization version   GIF version

Theorem elicopnf 12211
Description: Membership in a closed unbounded interval of reals. (Contributed by Mario Carneiro, 16-Sep-2014.)
Assertion
Ref Expression
elicopnf (𝐴 ∈ ℝ → (𝐵 ∈ (𝐴[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴𝐵)))

Proof of Theorem elicopnf
StepHypRef Expression
1 pnfxr 10036 . . 3 +∞ ∈ ℝ*
2 elico2 12179 . . 3 ((𝐴 ∈ ℝ ∧ +∞ ∈ ℝ*) → (𝐵 ∈ (𝐴[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴𝐵𝐵 < +∞)))
31, 2mpan2 706 . 2 (𝐴 ∈ ℝ → (𝐵 ∈ (𝐴[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴𝐵𝐵 < +∞)))
4 ltpnf 11898 . . . . 5 (𝐵 ∈ ℝ → 𝐵 < +∞)
54adantr 481 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐴𝐵) → 𝐵 < +∞)
65pm4.71i 663 . . 3 ((𝐵 ∈ ℝ ∧ 𝐴𝐵) ↔ ((𝐵 ∈ ℝ ∧ 𝐴𝐵) ∧ 𝐵 < +∞))
7 df-3an 1038 . . 3 ((𝐵 ∈ ℝ ∧ 𝐴𝐵𝐵 < +∞) ↔ ((𝐵 ∈ ℝ ∧ 𝐴𝐵) ∧ 𝐵 < +∞))
86, 7bitr4i 267 . 2 ((𝐵 ∈ ℝ ∧ 𝐴𝐵) ↔ (𝐵 ∈ ℝ ∧ 𝐴𝐵𝐵 < +∞))
93, 8syl6bbr 278 1 (𝐴 ∈ ℝ → (𝐵 ∈ (𝐴[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036  wcel 1987   class class class wbr 4613  (class class class)co 6604  cr 9879  +∞cpnf 10015  *cxr 10017   < clt 10018  cle 10019  [,)cico 12119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-pre-lttri 9954  ax-pre-lttrn 9955
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-po 4995  df-so 4996  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-ico 12123
This theorem is referenced by:  elrege0  12220  rexico  14027  limsupgle  14142  limsupgre  14146  rlim3  14163  ello12  14181  lo1bdd2  14189  elo12  14192  lo1resb  14229  rlimresb  14230  o1resb  14231  lo1eq  14233  rlimeq  14234  rlimsqzlem  14313  o1fsum  14472  ovolicopnf  23199  dvfsumrlimge0  23697  dvfsumrlim  23698  dvfsumrlim2  23699  cxp2lim  24603  chebbnd1  25061  chtppilimlem1  25062  chtppilimlem2  25063  chtppilim  25064  chebbnd2  25066  chto1lb  25067  chpchtlim  25068  chpo1ub  25069  vmadivsumb  25072  dchrisumlema  25077  dchrisumlem2  25079  dchrisumlem3  25080  dchrmusumlema  25082  dchrmusum2  25083  dchrvmasumlem2  25087  dchrvmasumiflem1  25090  dchrisum0lema  25103  dchrisum0lem1b  25104  dchrisum0lem2a  25106  dchrisum0lem2  25107  2vmadivsumlem  25129  selbergb  25138  selberg2b  25141  chpdifbndlem1  25142  selberg3lem1  25146  selberg3lem2  25147  selberg4lem1  25149  pntrsumo1  25154  selbergsb  25164  pntrlog2bndlem3  25168  pntpbnd1  25175  pntpbnd2  25176  pntibndlem3  25181  pntlemn  25189  pntlem3  25198  pntleml  25200  pnt2  25202  itg2addnclem2  33094  elbigo2  41638  rege1logbrege0  41644  blennnelnn  41662  dignnld  41689
  Copyright terms: Public domain W3C validator