MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elicore Structured version   Visualization version   GIF version

Theorem elicore 12777
Description: A member of a left-closed right-open interval of reals is real. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
elicore ((𝐴 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐶 ∈ ℝ)

Proof of Theorem elicore
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ico 12732 . . . . . . 7 [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
21elixx3g 12739 . . . . . 6 (𝐶 ∈ (𝐴[,)𝐵) ↔ ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐶𝐶 < 𝐵)))
32biimpi 217 . . . . 5 (𝐶 ∈ (𝐴[,)𝐵) → ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐶𝐶 < 𝐵)))
43simpld 495 . . . 4 (𝐶 ∈ (𝐴[,)𝐵) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*))
54simp3d 1136 . . 3 (𝐶 ∈ (𝐴[,)𝐵) → 𝐶 ∈ ℝ*)
65adantl 482 . 2 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐶 ∈ ℝ*)
7 simpl 483 . 2 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐴 ∈ ℝ)
83simprd 496 . . . 4 (𝐶 ∈ (𝐴[,)𝐵) → (𝐴𝐶𝐶 < 𝐵))
98simpld 495 . . 3 (𝐶 ∈ (𝐴[,)𝐵) → 𝐴𝐶)
109adantl 482 . 2 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐴𝐶)
114simp2d 1135 . . . 4 (𝐶 ∈ (𝐴[,)𝐵) → 𝐵 ∈ ℝ*)
1211adantl 482 . . 3 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐵 ∈ ℝ*)
13 pnfxr 10683 . . . 4 +∞ ∈ ℝ*
1413a1i 11 . . 3 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,)𝐵)) → +∞ ∈ ℝ*)
158simprd 496 . . . 4 (𝐶 ∈ (𝐴[,)𝐵) → 𝐶 < 𝐵)
1615adantl 482 . . 3 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐶 < 𝐵)
17 pnfge 12513 . . . . 5 (𝐵 ∈ ℝ*𝐵 ≤ +∞)
1811, 17syl 17 . . . 4 (𝐶 ∈ (𝐴[,)𝐵) → 𝐵 ≤ +∞)
1918adantl 482 . . 3 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐵 ≤ +∞)
206, 12, 14, 16, 19xrltletrd 12542 . 2 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐶 < +∞)
21 xrre3 12552 . 2 (((𝐶 ∈ ℝ*𝐴 ∈ ℝ) ∧ (𝐴𝐶𝐶 < +∞)) → 𝐶 ∈ ℝ)
226, 7, 10, 20, 21syl22anc 834 1 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ (𝐴[,)𝐵)) → 𝐶 ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1079  wcel 2105   class class class wbr 5057  (class class class)co 7145  cr 10524  +∞cpnf 10660  *cxr 10662   < clt 10663  cle 10664  [,)cico 12728
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-pre-lttri 10599  ax-pre-lttrn 10600
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-po 5467  df-so 5468  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7148  df-oprab 7149  df-mpo 7150  df-1st 7678  df-2nd 7679  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-ico 12732
This theorem is referenced by:  relowlpssretop  34527  limsupresico  41857  liminfresico  41928  fourierdlem43  42312
  Copyright terms: Public domain W3C validator