MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elii1 Structured version   Visualization version   GIF version

Theorem elii1 23538
Description: Divide the unit interval into two pieces. (Contributed by Mario Carneiro, 7-Jun-2014.)
Assertion
Ref Expression
elii1 (𝑋 ∈ (0[,](1 / 2)) ↔ (𝑋 ∈ (0[,]1) ∧ 𝑋 ≤ (1 / 2)))

Proof of Theorem elii1
StepHypRef Expression
1 0re 10642 . . . . . 6 0 ∈ ℝ
2 halfre 11850 . . . . . 6 (1 / 2) ∈ ℝ
31, 2elicc2i 12801 . . . . 5 (𝑋 ∈ (0[,](1 / 2)) ↔ (𝑋 ∈ ℝ ∧ 0 ≤ 𝑋𝑋 ≤ (1 / 2)))
43simp1bi 1141 . . . 4 (𝑋 ∈ (0[,](1 / 2)) → 𝑋 ∈ ℝ)
52a1i 11 . . . 4 (𝑋 ∈ (0[,](1 / 2)) → (1 / 2) ∈ ℝ)
6 1re 10640 . . . . 5 1 ∈ ℝ
76a1i 11 . . . 4 (𝑋 ∈ (0[,](1 / 2)) → 1 ∈ ℝ)
83simp3bi 1143 . . . 4 (𝑋 ∈ (0[,](1 / 2)) → 𝑋 ≤ (1 / 2))
9 halflt1 11854 . . . . . 6 (1 / 2) < 1
102, 6, 9ltleii 10762 . . . . 5 (1 / 2) ≤ 1
1110a1i 11 . . . 4 (𝑋 ∈ (0[,](1 / 2)) → (1 / 2) ≤ 1)
124, 5, 7, 8, 11letrd 10796 . . 3 (𝑋 ∈ (0[,](1 / 2)) → 𝑋 ≤ 1)
1312pm4.71ri 563 . 2 (𝑋 ∈ (0[,](1 / 2)) ↔ (𝑋 ≤ 1 ∧ 𝑋 ∈ (0[,](1 / 2))))
14 ancom 463 . . 3 ((𝑋 ≤ 1 ∧ 𝑋 ∈ (0[,](1 / 2))) ↔ (𝑋 ∈ (0[,](1 / 2)) ∧ 𝑋 ≤ 1))
15 an32 644 . . . 4 ((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ 𝑋 ≤ (1 / 2)) ∧ 𝑋 ≤ 1) ↔ (((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ 𝑋 ≤ 1) ∧ 𝑋 ≤ (1 / 2)))
16 df-3an 1085 . . . . . 6 ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋𝑋 ≤ (1 / 2)) ↔ ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ 𝑋 ≤ (1 / 2)))
173, 16bitri 277 . . . . 5 (𝑋 ∈ (0[,](1 / 2)) ↔ ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ 𝑋 ≤ (1 / 2)))
1817anbi1i 625 . . . 4 ((𝑋 ∈ (0[,](1 / 2)) ∧ 𝑋 ≤ 1) ↔ (((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ 𝑋 ≤ (1 / 2)) ∧ 𝑋 ≤ 1))
191, 6elicc2i 12801 . . . . . 6 (𝑋 ∈ (0[,]1) ↔ (𝑋 ∈ ℝ ∧ 0 ≤ 𝑋𝑋 ≤ 1))
20 df-3an 1085 . . . . . 6 ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋𝑋 ≤ 1) ↔ ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ 𝑋 ≤ 1))
2119, 20bitri 277 . . . . 5 (𝑋 ∈ (0[,]1) ↔ ((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ 𝑋 ≤ 1))
2221anbi1i 625 . . . 4 ((𝑋 ∈ (0[,]1) ∧ 𝑋 ≤ (1 / 2)) ↔ (((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ 𝑋 ≤ 1) ∧ 𝑋 ≤ (1 / 2)))
2315, 18, 223bitr4i 305 . . 3 ((𝑋 ∈ (0[,](1 / 2)) ∧ 𝑋 ≤ 1) ↔ (𝑋 ∈ (0[,]1) ∧ 𝑋 ≤ (1 / 2)))
2414, 23bitri 277 . 2 ((𝑋 ≤ 1 ∧ 𝑋 ∈ (0[,](1 / 2))) ↔ (𝑋 ∈ (0[,]1) ∧ 𝑋 ≤ (1 / 2)))
2513, 24bitri 277 1 (𝑋 ∈ (0[,](1 / 2)) ↔ (𝑋 ∈ (0[,]1) ∧ 𝑋 ≤ (1 / 2)))
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398  w3a 1083  wcel 2110   class class class wbr 5065  (class class class)co 7155  cr 10535  0cc0 10536  1c1 10537  cle 10675   / cdiv 11296  2c2 11691  [,]cicc 12740
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-br 5066  df-opab 5128  df-mpt 5146  df-id 5459  df-po 5473  df-so 5474  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-2 11699  df-icc 12744
This theorem is referenced by:  phtpycc  23594  pcoval1  23616  copco  23621  pcohtpylem  23622  pcopt  23625  pcopt2  23626  pcorevlem  23629
  Copyright terms: Public domain W3C validator