MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elimasni Structured version   Visualization version   GIF version

Theorem elimasni 5398
Description: Membership in an image of a singleton. (Contributed by NM, 5-Aug-2010.)
Assertion
Ref Expression
elimasni (𝐶 ∈ (𝐴 “ {𝐵}) → 𝐵𝐴𝐶)

Proof of Theorem elimasni
StepHypRef Expression
1 noel 3877 . . . . 5 ¬ 𝐶 ∈ ∅
2 snprc 4196 . . . . . . . . 9 𝐵 ∈ V ↔ {𝐵} = ∅)
32biimpi 204 . . . . . . . 8 𝐵 ∈ V → {𝐵} = ∅)
43imaeq2d 5372 . . . . . . 7 𝐵 ∈ V → (𝐴 “ {𝐵}) = (𝐴 “ ∅))
5 ima0 5387 . . . . . . 7 (𝐴 “ ∅) = ∅
64, 5syl6eq 2659 . . . . . 6 𝐵 ∈ V → (𝐴 “ {𝐵}) = ∅)
76eleq2d 2672 . . . . 5 𝐵 ∈ V → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐶 ∈ ∅))
81, 7mtbiri 315 . . . 4 𝐵 ∈ V → ¬ 𝐶 ∈ (𝐴 “ {𝐵}))
98con4i 111 . . 3 (𝐶 ∈ (𝐴 “ {𝐵}) → 𝐵 ∈ V)
10 elex 3184 . . 3 (𝐶 ∈ (𝐴 “ {𝐵}) → 𝐶 ∈ V)
119, 10jca 552 . 2 (𝐶 ∈ (𝐴 “ {𝐵}) → (𝐵 ∈ V ∧ 𝐶 ∈ V))
12 elimasng 5397 . . . 4 ((𝐵 ∈ V ∧ 𝐶 ∈ V) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ ⟨𝐵, 𝐶⟩ ∈ 𝐴))
13 df-br 4578 . . . 4 (𝐵𝐴𝐶 ↔ ⟨𝐵, 𝐶⟩ ∈ 𝐴)
1412, 13syl6bbr 276 . . 3 ((𝐵 ∈ V ∧ 𝐶 ∈ V) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐵𝐴𝐶))
1514biimpd 217 . 2 ((𝐵 ∈ V ∧ 𝐶 ∈ V) → (𝐶 ∈ (𝐴 “ {𝐵}) → 𝐵𝐴𝐶))
1611, 15mpcom 37 1 (𝐶 ∈ (𝐴 “ {𝐵}) → 𝐵𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382   = wceq 1474  wcel 1976  Vcvv 3172  c0 3873  {csn 4124  cop 4130   class class class wbr 4577  cima 5031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pr 4828
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ral 2900  df-rex 2901  df-rab 2904  df-v 3174  df-sbc 3402  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-sn 4125  df-pr 4127  df-op 4131  df-br 4578  df-opab 4638  df-xp 5034  df-cnv 5036  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041
This theorem is referenced by:  dffv2  6166  poimirlem2  32377  poimirlem23  32398
  Copyright terms: Public domain W3C validator