![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elimel | Structured version Visualization version GIF version |
Description: Eliminate a membership hypothesis for weak deduction theorem, when special case 𝐵 ∈ 𝐶 is provable. (Contributed by NM, 15-May-1999.) |
Ref | Expression |
---|---|
elimel.1 | ⊢ 𝐵 ∈ 𝐶 |
Ref | Expression |
---|---|
elimel | ⊢ if(𝐴 ∈ 𝐶, 𝐴, 𝐵) ∈ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2718 | . 2 ⊢ (𝐴 = if(𝐴 ∈ 𝐶, 𝐴, 𝐵) → (𝐴 ∈ 𝐶 ↔ if(𝐴 ∈ 𝐶, 𝐴, 𝐵) ∈ 𝐶)) | |
2 | eleq1 2718 | . 2 ⊢ (𝐵 = if(𝐴 ∈ 𝐶, 𝐴, 𝐵) → (𝐵 ∈ 𝐶 ↔ if(𝐴 ∈ 𝐶, 𝐴, 𝐵) ∈ 𝐶)) | |
3 | elimel.1 | . 2 ⊢ 𝐵 ∈ 𝐶 | |
4 | 1, 2, 3 | elimhyp 4179 | 1 ⊢ if(𝐴 ∈ 𝐶, 𝐴, 𝐵) ∈ 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2030 ifcif 4119 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-if 4120 |
This theorem is referenced by: fprg 6462 orduninsuc 7085 oawordeu 7680 oeoa 7722 omopth 7783 unfilem3 8267 inar1 9635 supsr 9971 renegcl 10382 peano5uzti 11505 eluzadd 11754 eluzsub 11755 ltweuz 12800 uzenom 12803 seqfn 12853 seq1 12854 seqp1 12856 sqeqor 13018 binom2 13019 nn0opth2 13099 faclbnd4lem2 13121 hashxp 13259 dvdsle 15079 divalglem7 15169 divalg 15173 gcdaddm 15293 smadiadetr 20529 iblcnlem 23600 ax5seglem8 25861 elimnv 27666 elimnvu 27667 nmlno0i 27777 nmblolbi 27783 blocn 27790 elimphu 27804 ubth 27857 htth 27903 ifhvhv0 28007 normlem6 28100 norm-iii 28125 norm3lemt 28137 ifchhv 28229 hhssablo 28248 hhssnvt 28250 shscl 28305 shslej 28367 shincl 28368 omlsii 28390 pjoml 28423 pjoc2 28426 chm0 28478 chne0 28481 chocin 28482 chj0 28484 chlejb1 28499 chnle 28501 ledi 28527 h1datom 28569 cmbr3 28595 pjoml2 28598 cmcm 28601 cmcm3 28602 lecm 28604 pjmuli 28676 pjige0 28678 pjhfo 28693 pj11 28701 eigre 28822 eigorth 28825 hoddi 28977 nmlnop0 28985 lnopeq 28996 lnopunilem2 28998 nmbdoplb 29012 nmcopex 29016 nmcoplb 29017 lnopcon 29022 lnfn0 29034 lnfnmul 29035 nmcfnex 29040 nmcfnlb 29041 lnfncon 29043 riesz4 29051 riesz1 29052 cnlnadjeu 29065 pjhmop 29137 pjidmco 29168 mdslmd1lem3 29314 mdslmd1lem4 29315 csmdsymi 29321 hatomic 29347 atord 29375 atcvat2 29376 bnj941 30969 bnj944 31134 kur14 31324 abs2sqle 31700 abs2sqlt 31701 onsucconn 32562 onsucsuccmp 32568 sdclem1 33669 bnd2d 42753 |
Copyright terms: Public domain | W3C validator |