![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elimhyps2 | Structured version Visualization version GIF version |
Description: Generalization of elimhyps 34565 that is not useful unless we can separately prove ⊢ 𝐴 ∈ V. (Contributed by NM, 13-Jun-2019.) |
Ref | Expression |
---|---|
elimhyps2.1 | ⊢ [𝐵 / 𝑥]𝜑 |
Ref | Expression |
---|---|
elimhyps2 | ⊢ [if([𝐴 / 𝑥]𝜑, 𝐴, 𝐵) / 𝑥]𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsbcq 3470 | . 2 ⊢ (𝐴 = if([𝐴 / 𝑥]𝜑, 𝐴, 𝐵) → ([𝐴 / 𝑥]𝜑 ↔ [if([𝐴 / 𝑥]𝜑, 𝐴, 𝐵) / 𝑥]𝜑)) | |
2 | dfsbcq 3470 | . 2 ⊢ (𝐵 = if([𝐴 / 𝑥]𝜑, 𝐴, 𝐵) → ([𝐵 / 𝑥]𝜑 ↔ [if([𝐴 / 𝑥]𝜑, 𝐴, 𝐵) / 𝑥]𝜑)) | |
3 | elimhyps2.1 | . 2 ⊢ [𝐵 / 𝑥]𝜑 | |
4 | 1, 2, 3 | elimhyp 4179 | 1 ⊢ [if([𝐴 / 𝑥]𝜑, 𝐴, 𝐵) / 𝑥]𝜑 |
Colors of variables: wff setvar class |
Syntax hints: [wsbc 3468 ifcif 4119 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-sbc 3469 df-if 4120 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |