Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  elin1d Structured version   Visualization version   GIF version

Theorem elin1d 3835
 Description: Elementhood in the first set of an intersection - deduction version. (Contributed by Thierry Arnoux, 3-May-2020.)
Hypothesis
Ref Expression
elin1d.1 (𝜑𝑋 ∈ (𝐴𝐵))
Assertion
Ref Expression
elin1d (𝜑𝑋𝐴)

Proof of Theorem elin1d
StepHypRef Expression
1 elin1d.1 . 2 (𝜑𝑋 ∈ (𝐴𝐵))
2 elinel1 3832 . 2 (𝑋 ∈ (𝐴𝐵) → 𝑋𝐴)
31, 2syl 17 1 (𝜑𝑋𝐴)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∈ wcel 2030   ∩ cin 3606 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-v 3233  df-in 3614 This theorem is referenced by:  nmoleub2lem3  22961  nmoleub3  22965  tayl0  24161  esum2d  30283  ispisys2  30344  sigapisys  30346  sigapildsyslem  30352  sigapildsys  30353  eulerpartlemgvv  30566  tgoldbachgt  30869
 Copyright terms: Public domain W3C validator