MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elioopnf Structured version   Visualization version   GIF version

Theorem elioopnf 12819
Description: Membership in an unbounded interval of extended reals. (Contributed by Mario Carneiro, 18-Jun-2014.)
Assertion
Ref Expression
elioopnf (𝐴 ∈ ℝ* → (𝐵 ∈ (𝐴(,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴 < 𝐵)))

Proof of Theorem elioopnf
StepHypRef Expression
1 pnfxr 10683 . . 3 +∞ ∈ ℝ*
2 elioo2 12767 . . 3 ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝐵 ∈ (𝐴(,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴 < 𝐵𝐵 < +∞)))
31, 2mpan2 687 . 2 (𝐴 ∈ ℝ* → (𝐵 ∈ (𝐴(,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴 < 𝐵𝐵 < +∞)))
4 df-3an 1081 . . 3 ((𝐵 ∈ ℝ ∧ 𝐴 < 𝐵𝐵 < +∞) ↔ ((𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝐵 < +∞))
5 ltpnf 12503 . . . . 5 (𝐵 ∈ ℝ → 𝐵 < +∞)
65adantr 481 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵 < +∞)
76pm4.71i 560 . . 3 ((𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ↔ ((𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ 𝐵 < +∞))
84, 7bitr4i 279 . 2 ((𝐵 ∈ ℝ ∧ 𝐴 < 𝐵𝐵 < +∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴 < 𝐵))
93, 8syl6bb 288 1 (𝐴 ∈ ℝ* → (𝐵 ∈ (𝐴(,)+∞) ↔ (𝐵 ∈ ℝ ∧ 𝐴 < 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079  wcel 2105   class class class wbr 5057  (class class class)co 7145  cr 10524  +∞cpnf 10660  *cxr 10662   < clt 10663  (,)cioo 12726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-pre-lttri 10599  ax-pre-lttrn 10600
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-po 5467  df-so 5468  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7148  df-oprab 7149  df-mpo 7150  df-1st 7678  df-2nd 7679  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-ioo 12730
This theorem is referenced by:  mbfmulc2lem  24175  mbfposr  24180  ismbf3d  24182  mbfaddlem  24188  mbfsup  24192  itg2gt0  24288  itg2cnlem1  24289  itg2cnlem2  24290  lhop2  24539  dvfsumlem2  24551  dvfsumlem3  24552  dvfsumrlimge0  24554  dvfsumrlim  24555  dvfsumrlim2  24556  pntpbnd1a  26088  pntpbnd2  26090  pntibndlem2  26094  pntibndlem3  26095  pntlemi  26107  pntlemo  26110  relowlssretop  34526  itg2addnclem2  34825  iblabsnclem  34836  ftc1anclem1  34848  ftc1anclem6  34853  rfcnpre1  41153  regt1loggt0  44524  rege1logbrege0  44546  rege1logbzge0  44547
  Copyright terms: Public domain W3C validator