MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eliooxr Structured version   Visualization version   GIF version

Theorem eliooxr 12346
Description: A nonempty open interval spans an interval of extended reals. (Contributed by NM, 17-Aug-2008.)
Assertion
Ref Expression
eliooxr (𝐴 ∈ (𝐵(,)𝐶) → (𝐵 ∈ ℝ*𝐶 ∈ ℝ*))

Proof of Theorem eliooxr
StepHypRef Expression
1 ne0i 4029 . 2 (𝐴 ∈ (𝐵(,)𝐶) → (𝐵(,)𝐶) ≠ ∅)
2 ndmioo 12316 . . 3 (¬ (𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵(,)𝐶) = ∅)
32necon1ai 2923 . 2 ((𝐵(,)𝐶) ≠ ∅ → (𝐵 ∈ ℝ*𝐶 ∈ ℝ*))
41, 3syl 17 1 (𝐴 ∈ (𝐵(,)𝐶) → (𝐵 ∈ ℝ*𝐶 ∈ ℝ*))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  wcel 2103  wne 2896  c0 4023  (class class class)co 6765  *cxr 10186  (,)cioo 12289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-cnex 10105  ax-resscn 10106
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-ral 3019  df-rex 3020  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-op 4292  df-uni 4545  df-iun 4630  df-br 4761  df-opab 4821  df-mpt 4838  df-id 5128  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-fv 6009  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-1st 7285  df-2nd 7286  df-xr 10191  df-ioo 12293
This theorem is referenced by:  eliooord  12347  elioo4g  12348  ioorebas  12389  tgioo  22721  ioorcl2  23461  ioorinv2  23464  fct2relem  30905  iooelexlt  33442
  Copyright terms: Public domain W3C validator