MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eliunxp Structured version   Visualization version   GIF version

Theorem eliunxp 5248
Description: Membership in a union of Cartesian products. Analogue of elxp 5121 for nonconstant 𝐵(𝑥). (Contributed by Mario Carneiro, 29-Dec-2014.)
Assertion
Ref Expression
eliunxp (𝐶 𝑥𝐴 ({𝑥} × 𝐵) ↔ ∃𝑥𝑦(𝐶 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑥,𝑦,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem eliunxp
StepHypRef Expression
1 relxp 5217 . . . . . 6 Rel ({𝑥} × 𝐵)
21rgenw 2921 . . . . 5 𝑥𝐴 Rel ({𝑥} × 𝐵)
3 reliun 5229 . . . . 5 (Rel 𝑥𝐴 ({𝑥} × 𝐵) ↔ ∀𝑥𝐴 Rel ({𝑥} × 𝐵))
42, 3mpbir 221 . . . 4 Rel 𝑥𝐴 ({𝑥} × 𝐵)
5 elrel 5212 . . . 4 ((Rel 𝑥𝐴 ({𝑥} × 𝐵) ∧ 𝐶 𝑥𝐴 ({𝑥} × 𝐵)) → ∃𝑥𝑦 𝐶 = ⟨𝑥, 𝑦⟩)
64, 5mpan 705 . . 3 (𝐶 𝑥𝐴 ({𝑥} × 𝐵) → ∃𝑥𝑦 𝐶 = ⟨𝑥, 𝑦⟩)
76pm4.71ri 664 . 2 (𝐶 𝑥𝐴 ({𝑥} × 𝐵) ↔ (∃𝑥𝑦 𝐶 = ⟨𝑥, 𝑦⟩ ∧ 𝐶 𝑥𝐴 ({𝑥} × 𝐵)))
8 nfiu1 4541 . . . 4 𝑥 𝑥𝐴 ({𝑥} × 𝐵)
98nfel2 2778 . . 3 𝑥 𝐶 𝑥𝐴 ({𝑥} × 𝐵)
10919.41 2101 . 2 (∃𝑥(∃𝑦 𝐶 = ⟨𝑥, 𝑦⟩ ∧ 𝐶 𝑥𝐴 ({𝑥} × 𝐵)) ↔ (∃𝑥𝑦 𝐶 = ⟨𝑥, 𝑦⟩ ∧ 𝐶 𝑥𝐴 ({𝑥} × 𝐵)))
11 19.41v 1912 . . . 4 (∃𝑦(𝐶 = ⟨𝑥, 𝑦⟩ ∧ 𝐶 𝑥𝐴 ({𝑥} × 𝐵)) ↔ (∃𝑦 𝐶 = ⟨𝑥, 𝑦⟩ ∧ 𝐶 𝑥𝐴 ({𝑥} × 𝐵)))
12 eleq1 2687 . . . . . . 7 (𝐶 = ⟨𝑥, 𝑦⟩ → (𝐶 𝑥𝐴 ({𝑥} × 𝐵) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵)))
13 opeliunxp 5160 . . . . . . 7 (⟨𝑥, 𝑦⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝑥𝐴𝑦𝐵))
1412, 13syl6bb 276 . . . . . 6 (𝐶 = ⟨𝑥, 𝑦⟩ → (𝐶 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝑥𝐴𝑦𝐵)))
1514pm5.32i 668 . . . . 5 ((𝐶 = ⟨𝑥, 𝑦⟩ ∧ 𝐶 𝑥𝐴 ({𝑥} × 𝐵)) ↔ (𝐶 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)))
1615exbii 1772 . . . 4 (∃𝑦(𝐶 = ⟨𝑥, 𝑦⟩ ∧ 𝐶 𝑥𝐴 ({𝑥} × 𝐵)) ↔ ∃𝑦(𝐶 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)))
1711, 16bitr3i 266 . . 3 ((∃𝑦 𝐶 = ⟨𝑥, 𝑦⟩ ∧ 𝐶 𝑥𝐴 ({𝑥} × 𝐵)) ↔ ∃𝑦(𝐶 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)))
1817exbii 1772 . 2 (∃𝑥(∃𝑦 𝐶 = ⟨𝑥, 𝑦⟩ ∧ 𝐶 𝑥𝐴 ({𝑥} × 𝐵)) ↔ ∃𝑥𝑦(𝐶 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)))
197, 10, 183bitr2i 288 1 (𝐶 𝑥𝐴 ({𝑥} × 𝐵) ↔ ∃𝑥𝑦(𝐶 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384   = wceq 1481  wex 1702  wcel 1988  wral 2909  {csn 4168  cop 4174   ciun 4511   × cxp 5102  Rel wrel 5109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pr 4897
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ral 2914  df-rex 2915  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-sn 4169  df-pr 4171  df-op 4175  df-iun 4513  df-opab 4704  df-xp 5110  df-rel 5111
This theorem is referenced by:  raliunxp  5250  dfmpt3  6001  mpt2mptx  6736  fsumcom2  14486  fsumcom2OLD  14487  fprodcom2  14695  fprodcom2OLD  14696  isfunc  16505  gsum2d2  18354  dprd2d2  18424  fsumvma  24919  mpt2mptxf  29451  poimirlem26  33406  dvnprodlem1  39924
  Copyright terms: Public domain W3C validator