MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elixp2 Structured version   Visualization version   GIF version

Theorem elixp2 7954
Description: Membership in an infinite Cartesian product. See df-ixp 7951 for discussion of the notation. (Contributed by NM, 28-Sep-2006.)
Assertion
Ref Expression
elixp2 (𝐹X𝑥𝐴 𝐵 ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem elixp2
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 fneq1 6017 . . . . 5 (𝑓 = 𝐹 → (𝑓 Fn 𝐴𝐹 Fn 𝐴))
2 fveq1 6228 . . . . . . 7 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
32eleq1d 2715 . . . . . 6 (𝑓 = 𝐹 → ((𝑓𝑥) ∈ 𝐵 ↔ (𝐹𝑥) ∈ 𝐵))
43ralbidv 3015 . . . . 5 (𝑓 = 𝐹 → (∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵 ↔ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
51, 4anbi12d 747 . . . 4 (𝑓 = 𝐹 → ((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵) ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)))
6 dfixp 7952 . . . 4 X𝑥𝐴 𝐵 = {𝑓 ∣ (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵)}
75, 6elab2g 3385 . . 3 (𝐹 ∈ V → (𝐹X𝑥𝐴 𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)))
87pm5.32i 670 . 2 ((𝐹 ∈ V ∧ 𝐹X𝑥𝐴 𝐵) ↔ (𝐹 ∈ V ∧ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)))
9 elex 3243 . . 3 (𝐹X𝑥𝐴 𝐵𝐹 ∈ V)
109pm4.71ri 666 . 2 (𝐹X𝑥𝐴 𝐵 ↔ (𝐹 ∈ V ∧ 𝐹X𝑥𝐴 𝐵))
11 3anass 1059 . 2 ((𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵) ↔ (𝐹 ∈ V ∧ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)))
128, 10, 113bitr4i 292 1 (𝐹X𝑥𝐴 𝐵 ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wral 2941  Vcvv 3231   Fn wfn 5921  cfv 5926  Xcixp 7950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-iota 5889  df-fun 5928  df-fn 5929  df-fv 5934  df-ixp 7951
This theorem is referenced by:  fvixp  7955  ixpfn  7956  elixp  7957  ixpf  7972  resixp  7985  undifixp  7986  mptelixpg  7987  prdsbasprj  16179  xpsfrnel  16270  isssc  16527  isfuncd  16572  funcres2b  16604  dprdw  18455  ptrecube  33539  kelac1  37950  elixpconstg  39580  fvixp2  39703  rrxsnicc  40838  ioorrnopnxrlem  40844  hoiqssbllem1  41157  iinhoiicclem  41208  iunhoiioolem  41210
  Copyright terms: Public domain W3C validator