![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elixp2 | Structured version Visualization version GIF version |
Description: Membership in an infinite Cartesian product. See df-ixp 7951 for discussion of the notation. (Contributed by NM, 28-Sep-2006.) |
Ref | Expression |
---|---|
elixp2 | ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fneq1 6017 | . . . . 5 ⊢ (𝑓 = 𝐹 → (𝑓 Fn 𝐴 ↔ 𝐹 Fn 𝐴)) | |
2 | fveq1 6228 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑥) = (𝐹‘𝑥)) | |
3 | 2 | eleq1d 2715 | . . . . . 6 ⊢ (𝑓 = 𝐹 → ((𝑓‘𝑥) ∈ 𝐵 ↔ (𝐹‘𝑥) ∈ 𝐵)) |
4 | 3 | ralbidv 3015 | . . . . 5 ⊢ (𝑓 = 𝐹 → (∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
5 | 1, 4 | anbi12d 747 | . . . 4 ⊢ (𝑓 = 𝐹 → ((𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵) ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵))) |
6 | dfixp 7952 | . . . 4 ⊢ X𝑥 ∈ 𝐴 𝐵 = {𝑓 ∣ (𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵)} | |
7 | 5, 6 | elab2g 3385 | . . 3 ⊢ (𝐹 ∈ V → (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵))) |
8 | 7 | pm5.32i 670 | . 2 ⊢ ((𝐹 ∈ V ∧ 𝐹 ∈ X𝑥 ∈ 𝐴 𝐵) ↔ (𝐹 ∈ V ∧ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵))) |
9 | elex 3243 | . . 3 ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 → 𝐹 ∈ V) | |
10 | 9 | pm4.71ri 666 | . 2 ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ (𝐹 ∈ V ∧ 𝐹 ∈ X𝑥 ∈ 𝐴 𝐵)) |
11 | 3anass 1059 | . 2 ⊢ ((𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) ↔ (𝐹 ∈ V ∧ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵))) | |
12 | 8, 10, 11 | 3bitr4i 292 | 1 ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 383 ∧ w3a 1054 = wceq 1523 ∈ wcel 2030 ∀wral 2941 Vcvv 3231 Fn wfn 5921 ‘cfv 5926 Xcixp 7950 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-iota 5889 df-fun 5928 df-fn 5929 df-fv 5934 df-ixp 7951 |
This theorem is referenced by: fvixp 7955 ixpfn 7956 elixp 7957 ixpf 7972 resixp 7985 undifixp 7986 mptelixpg 7987 prdsbasprj 16179 xpsfrnel 16270 isssc 16527 isfuncd 16572 funcres2b 16604 dprdw 18455 ptrecube 33539 kelac1 37950 elixpconstg 39580 fvixp2 39703 rrxsnicc 40838 ioorrnopnxrlem 40844 hoiqssbllem1 41157 iinhoiicclem 41208 iunhoiioolem 41210 |
Copyright terms: Public domain | W3C validator |