Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elixpconstg Structured version   Visualization version   GIF version

Theorem elixpconstg 41362
Description: Membership in an infinite Cartesian product of a constant 𝐵. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Assertion
Ref Expression
elixpconstg (𝐹𝑉 → (𝐹X𝑥𝐴 𝐵𝐹:𝐴𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem elixpconstg
StepHypRef Expression
1 ixpfn 8469 . . 3 (𝐹X𝑥𝐴 𝐵𝐹 Fn 𝐴)
2 elixp2 8467 . . . 4 (𝐹X𝑥𝐴 𝐵 ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
32simp3bi 1143 . . 3 (𝐹X𝑥𝐴 𝐵 → ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)
4 ffnfv 6884 . . 3 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
51, 3, 4sylanbrc 585 . 2 (𝐹X𝑥𝐴 𝐵𝐹:𝐴𝐵)
6 elex 3514 . . . . 5 (𝐹𝑉𝐹 ∈ V)
76adantr 483 . . . 4 ((𝐹𝑉𝐹:𝐴𝐵) → 𝐹 ∈ V)
8 ffn 6516 . . . . 5 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
98adantl 484 . . . 4 ((𝐹𝑉𝐹:𝐴𝐵) → 𝐹 Fn 𝐴)
104simprbi 499 . . . . 5 (𝐹:𝐴𝐵 → ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)
1110adantl 484 . . . 4 ((𝐹𝑉𝐹:𝐴𝐵) → ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)
127, 9, 11, 2syl3anbrc 1339 . . 3 ((𝐹𝑉𝐹:𝐴𝐵) → 𝐹X𝑥𝐴 𝐵)
1312ex 415 . 2 (𝐹𝑉 → (𝐹:𝐴𝐵𝐹X𝑥𝐴 𝐵))
145, 13impbid2 228 1 (𝐹𝑉 → (𝐹X𝑥𝐴 𝐵𝐹:𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wcel 2114  wral 3140  Vcvv 3496   Fn wfn 6352  wf 6353  cfv 6357  Xcixp 8463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pr 5332
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-fv 6365  df-ixp 8464
This theorem is referenced by:  iinhoiicclem  42962
  Copyright terms: Public domain W3C validator