Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ellimits Structured version   Visualization version   GIF version

Theorem ellimits 32142
Description: Membership in the class of all limit ordinals. (Contributed by Scott Fenton, 11-Apr-2012.)
Hypothesis
Ref Expression
ellimits.1 𝐴 ∈ V
Assertion
Ref Expression
ellimits (𝐴 Limits ↔ Lim 𝐴)

Proof of Theorem ellimits
StepHypRef Expression
1 df-limits 32092 . . 3 Limits = ((On ∩ Fix Bigcup ) ∖ {∅})
21eleq2i 2722 . 2 (𝐴 Limits 𝐴 ∈ ((On ∩ Fix Bigcup ) ∖ {∅}))
3 eldif 3617 . 2 (𝐴 ∈ ((On ∩ Fix Bigcup ) ∖ {∅}) ↔ (𝐴 ∈ (On ∩ Fix Bigcup ) ∧ ¬ 𝐴 ∈ {∅}))
4 3anan32 1068 . . 3 ((Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴) ↔ ((Ord 𝐴𝐴 = 𝐴) ∧ 𝐴 ≠ ∅))
5 df-lim 5766 . . 3 (Lim 𝐴 ↔ (Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴))
6 elin 3829 . . . . 5 (𝐴 ∈ (On ∩ Fix Bigcup ) ↔ (𝐴 ∈ On ∧ 𝐴 Fix Bigcup ))
7 ellimits.1 . . . . . . 7 𝐴 ∈ V
87elon 5770 . . . . . 6 (𝐴 ∈ On ↔ Ord 𝐴)
97elfix 32135 . . . . . . 7 (𝐴 Fix Bigcup 𝐴 Bigcup 𝐴)
107brbigcup 32130 . . . . . . 7 (𝐴 Bigcup 𝐴 𝐴 = 𝐴)
11 eqcom 2658 . . . . . . 7 ( 𝐴 = 𝐴𝐴 = 𝐴)
129, 10, 113bitri 286 . . . . . 6 (𝐴 Fix Bigcup 𝐴 = 𝐴)
138, 12anbi12i 733 . . . . 5 ((𝐴 ∈ On ∧ 𝐴 Fix Bigcup ) ↔ (Ord 𝐴𝐴 = 𝐴))
146, 13bitri 264 . . . 4 (𝐴 ∈ (On ∩ Fix Bigcup ) ↔ (Ord 𝐴𝐴 = 𝐴))
157elsn 4225 . . . . 5 (𝐴 ∈ {∅} ↔ 𝐴 = ∅)
1615necon3bbii 2870 . . . 4 𝐴 ∈ {∅} ↔ 𝐴 ≠ ∅)
1714, 16anbi12i 733 . . 3 ((𝐴 ∈ (On ∩ Fix Bigcup ) ∧ ¬ 𝐴 ∈ {∅}) ↔ ((Ord 𝐴𝐴 = 𝐴) ∧ 𝐴 ≠ ∅))
184, 5, 173bitr4ri 293 . 2 ((𝐴 ∈ (On ∩ Fix Bigcup ) ∧ ¬ 𝐴 ∈ {∅}) ↔ Lim 𝐴)
192, 3, 183bitri 286 1 (𝐴 Limits ↔ Lim 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  Vcvv 3231  cdif 3604  cin 3606  c0 3948  {csn 4210   cuni 4468   class class class wbr 4685  Ord word 5760  Oncon0 5761  Lim wlim 5762   Bigcup cbigcup 32066   Fix cfix 32067   Limits climits 32068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-symdif 3877  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ord 5764  df-on 5765  df-lim 5766  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-fo 5932  df-fv 5934  df-1st 7210  df-2nd 7211  df-txp 32086  df-bigcup 32090  df-fix 32091  df-limits 32092
This theorem is referenced by:  dfom5b  32144  dfrdg4  32183
  Copyright terms: Public domain W3C validator