MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ello1 Structured version   Visualization version   GIF version

Theorem ello1 14196
Description: Elementhood in the set of eventually upper bounded functions. (Contributed by Mario Carneiro, 26-May-2016.)
Assertion
Ref Expression
ello1 (𝐹 ∈ ≤𝑂(1) ↔ (𝐹 ∈ (ℝ ↑pm ℝ) ∧ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹𝑦) ≤ 𝑚))
Distinct variable group:   𝑥,𝑚,𝑦,𝐹

Proof of Theorem ello1
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 dmeq 5294 . . . . 5 (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹)
21ineq1d 3797 . . . 4 (𝑓 = 𝐹 → (dom 𝑓 ∩ (𝑥[,)+∞)) = (dom 𝐹 ∩ (𝑥[,)+∞)))
3 fveq1 6157 . . . . 5 (𝑓 = 𝐹 → (𝑓𝑦) = (𝐹𝑦))
43breq1d 4633 . . . 4 (𝑓 = 𝐹 → ((𝑓𝑦) ≤ 𝑚 ↔ (𝐹𝑦) ≤ 𝑚))
52, 4raleqbidv 3145 . . 3 (𝑓 = 𝐹 → (∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(𝑓𝑦) ≤ 𝑚 ↔ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹𝑦) ≤ 𝑚))
652rexbidv 3052 . 2 (𝑓 = 𝐹 → (∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(𝑓𝑦) ≤ 𝑚 ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹𝑦) ≤ 𝑚))
7 df-lo1 14172 . 2 ≤𝑂(1) = {𝑓 ∈ (ℝ ↑pm ℝ) ∣ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(𝑓𝑦) ≤ 𝑚}
86, 7elrab2 3353 1 (𝐹 ∈ ≤𝑂(1) ↔ (𝐹 ∈ (ℝ ↑pm ℝ) ∧ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹𝑦) ≤ 𝑚))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384   = wceq 1480  wcel 1987  wral 2908  wrex 2909  cin 3559   class class class wbr 4623  dom cdm 5084  cfv 5857  (class class class)co 6615  pm cpm 7818  cr 9895  +∞cpnf 10031  cle 10035  [,)cico 12135  ≤𝑂(1)clo1 14168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2913  df-rex 2914  df-rab 2917  df-v 3192  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-sn 4156  df-pr 4158  df-op 4162  df-uni 4410  df-br 4624  df-dm 5094  df-iota 5820  df-fv 5865  df-lo1 14172
This theorem is referenced by:  ello12  14197  lo1f  14199  lo1dm  14200
  Copyright terms: Public domain W3C validator